Evaluation of microstructure and electrochemical behavior of dual-layer NiCrAlY/mullite plasma sprayed coating on high silicon cast iron alloy

2017 ◽  
Vol 43 (16) ◽  
pp. 14146-14155 ◽  
Author(s):  
Alireza Jam ◽  
Seyed Mohammad Reza Derakhshandeh ◽  
Hosein Rajaei ◽  
Amir Hossein Pakseresht
Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 963
Author(s):  
Peihu Gao ◽  
Baiyang Chen ◽  
Shencong Zeng ◽  
Zhong Yang ◽  
Yongchun Guo ◽  
...  

Plasma-sprayed nickel-based self-fusion alloy coatings were annealed in a vacuum at 990, 1020 and 1050 °C for 20 min to increase the bonding between the compacted graphite cast iron substrate and coating, as well as the inner cohesion of the coatings. It was found that nickel and chromium diffused between nickel-based alloy coatings and compacted graphite cast iron substrate. A metallurgical translation zone with a thickness up to 1145 μm formed during the vacuum annealing, which resulted in an enhancement of the adhesion between the coating and substrate. The adhesion strength at room temperature was increased from the as-sprayed coating of 33.4 MPa to the annealed one of 163 MPa. Meanwhile, the adhesion strength at 500 °C reached 146 MPa. Conversely, the inner cohesion of the coating was improved with the particles’ interfaces healed after vacuum annealing. The micro-hardness of the annealed coatings was increased to 902 HV from the as-sprayed one of 578 HV.


2012 ◽  
Vol 466-467 ◽  
pp. 357-360
Author(s):  
Wen Quan Wang ◽  
Bao Sheng Lu ◽  
Chang Long Shan

Microstructures and properties of plasma surfaced Ni25 and Fe304 layers prepared on nodular cast iron substrate were investigated. The study showed that the interface boundary existed between the layers and substrate. Compared with typical microstructures of welded joint, the similar columnar grains in the layers perpendicular to the interface line were observed, which were hardly seen in the plasma sprayed coating. The conclusion could be drawn that the bonding between the Ni25 and Fe304 layers and nodular cast iron substrate belonged to the metallurgical cohesion. The XRD analysis showed that the metal compounds such as Ni4B3,Cr7BC4,γ-(Fe, Ni) and Cr7C3were found in the layers. The study demonstrated that the layers had proper strength and hardness to repair the surface defects of the nodular cast iron.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-133-C8-134
Author(s):  
H. Nakamura ◽  
N. Tsuya ◽  
Y. Saito ◽  
Y. Katsumata ◽  
Y. Harada
Keyword(s):  

Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CORROSIRON is a high silicon corrosion resistant cast iron containing 14.5% Silicon. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as machining and joining. Filing Code: CI-3. Producer or source: Pacific Foundry Company Ltd.


Alloy Digest ◽  
1980 ◽  
Vol 29 (3) ◽  

Abstract AMPCOLOY 570 is a cast copper-nickel-aluminum-cobalt-iron alloy specially developed for applications involving severe stresses and high temperatures, such as glass-making molds and plate-glass rolls. It is significantly superior to cast iron which has been commonly used for glass-making molds. Good foundry techniques will yield high-quality castings of Ampcoloy 570 in a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-392. Producer or source: Ampco Metal Inc..


2002 ◽  
Vol 756 ◽  
Author(s):  
H. Zhang ◽  
X. Ma ◽  
J. Dai ◽  
S. Hui ◽  
J. Roth ◽  
...  

ABSTRACTAn intermediate temperature solid oxide fuel cell (SOFC) electrolyte film of La0.8Sr 0.2Ga0.8Mg0.2O2.8 (LSGM) was fabricated using a plasma spray process. The microstructure and phase were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical behavior of the thermal sprayed LSGM film was investigated using electrochemical impedance spectroscopy (EIS). The study indicates that thermal spray can deposit a dense LSGM layer. It was found that the rapid cooling in the thermal process led to an amorphous or poor crystalline LSGM deposited layer. This amorphous structure has a significant effect on the performance of the cell. Crystallization of the deposited LSGM layer was observed during annealing between 500–600 °C. After annealing at 800 °C, the ionic conductivity of the sprayed LSGM layer can reach the same level as that of the sintered LSGM.


Author(s):  
V.E. Panin ◽  
V.A. Klimenov ◽  
S.V. Panin

Abstract Deformation stages and specific features were studied by mesomechanical methods under tension of plasma sprayed coating-steel matrix composites. The effect of coating quality on the deformation of the matrix at the mesolevel was revealed. The results obtained make it possible to predict reliability and durability of this kind of coating and of the entire composite.


2021 ◽  
Author(s):  
Tuan Nguyen Van ◽  
Tuan Anh Nguyen ◽  
Ha Pham Thi ◽  
Ly Pham Thi ◽  
Phuong Nguyen ◽  
...  

Abstract A typical structure of thermal spray coatings consisted of molten particles, semi-molten particles, oxides, pores and cracks. These factors caused the porosity of sprayed coatings, leading to a great influence on the coating properties, especially their wear-corrosion resistance. In this study, a post-spray sealing treatment of Cr3C2-NiCr/Al2O3-TiO2 plasma sprayed coatings was carried out, then their corrosion properties were evaluated, before and after the treatment. For sealing process, aluminum phosphate (APP) containing aluminum oxide (Al2O3) nanoparticles (~10 nm) was used. The permeability of APP into the sprayed coating was analyzed by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The treatment efficiency for porosity and corrosion resistance of sprayed coatings were evaluated by electrochemical measurements, such as the potentiodynamic polarization and electrochemical impedance spectroscopy. In addition, the wear-corrosion resistance of the sealed coating was examined in 3.5 wt.% NaCl circulation solution containing 0.25 wt.% SiO2 particles. The obtained results showed that APP penetrated deeply through the sprayed coating. The incorporation of Al2O3 nanoparticles into APP sealant enhanced the treatment efficiency of porosity for sprayed coating. The effect of the post-treatment on corrosion protection of the sprayed coating has been discussed.


2010 ◽  
Vol 44-47 ◽  
pp. 2144-2147
Author(s):  
Ya Zhe Xing ◽  
Chao Ping Jiang ◽  
Hong Chen ◽  
Jian Min Hao

In this work, three cast iron coatings were produced by atmospheric plasma spraying. During spraying, the surface temperature of three coatings (substrate temperature) was controlled to be averagely 50oC, 180oC and 240oC by changing the processing parameters. X-ray diffraction (XRD) was employed to analyze the phase structure of the starting powder and the coatings. The results showed that the powder was mainly composed of (Fe,Cr)7C3 and martensite and both the spraying processing and the substrate temperature exerted no influence on coating phase structure. An optical microscope (OM) was used to characterize the microstructure of the cross-section and surface of the coatings. It was found that the cross sectional hardness increased with the increase of the substrate temperature due to the improvement in interlamellar bonding.


2015 ◽  
Vol 9 (1) ◽  
pp. 42-55 ◽  
Author(s):  
Imane Demnati ◽  
David Grossin ◽  
Olivier Marsan ◽  
Ghislaine Bertrand ◽  
Gérard Collonges ◽  
...  

Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities.


Sign in / Sign up

Export Citation Format

Share Document