Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scaffolds under axial compression: Application, communication and simulation

2018 ◽  
Vol 44 (10) ◽  
pp. 11282-11291 ◽  
Author(s):  
S. Sahmani ◽  
A. Khandan ◽  
S. Saber-Samandari ◽  
M.M. Aghdam
2015 ◽  
Vol 16 (4) ◽  
pp. 045001 ◽  
Author(s):  
Jian-Feng Pan ◽  
Shuo Li ◽  
Chang-An Guo ◽  
Du-Liang Xu ◽  
Feng Zhang ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Felix J. Landaeta ◽  
Jose Nauaki Shiozawa ◽  
Arthur Erdman ◽  
Cara Piazza

Abstract Background External fixation is a mainstream limb reconstruction technique, most often used after a traumatic injury. Due to the high rates of trauma in developing countries, external fixation devices are often utilized for immediate fracture stabilization and soft tissue repair. Proper external fixation treatment too often still fails to be adopted in these regions due to the high cost and trauma complexity. A novel, inexpensive, unilateral fixator was constructed using 3D printed clamps and other readily available supporting components. ASTM standard F1541 tests were used to assess the biomechanical properties of this novel external fixator. Methods Applicable sections of ASTM standard F1541 were used to determine the biomechanical properties of the novel external fixator. 3D printed clamps modeled using SolidWorks and printed with chopped carbon fibers using a fuse deposition modeling (FDM) based 3D printer by Markforged (Boston, MA) were used. This study included 3 different testing configurations: axial compression, anterior-posterior (AP) bending, and medial-lateral (ML) bending. Using the novel unilateral fixator with 3D printed clamps previously sterilized by autoclave, an input load was applied at a rate of 20 N/s, starting at 0 N via a hydraulic MTS tester Model 359. Force and deformation data were collected at a sampling rate of 30 Hz. There was a load limit of 750 N, or until there was a maximum vertical deformation of 6 mm. Also, 4 key dimensions of the 3D printed clamps were measured pre and post autoclave: diameter, width, height and length. Results The novel external fixator had axial compression, AP and ML bending rigidities of 246.12 N/mm (σ = 8.87 N/mm), 35.98 N/mm (σ = 2.11 N/mm) and 39.60 N/mm (σ =2.60 N/mm), respectively. The 3D printed clamps shrunk unproportionally due to the autoclaving process, with the diameter, width, height and length dimensions shrinking by 2.6%, 0.2%, 1.7% and 0.3%, respectively. Conclusion Overall, the biomechanical properties of the novel fixator with 3D printed clamps assessed in this study were comparable to external fixators that are currently being used in clinical settings. While the biomechanics were comparable, the low cost and readily available components of this design meets the need for low cost external fixators in developing countries that current clinical options could not satisfy. However, further verification and validation routines to determine efficacy and safety must be conducted before this novel fixator can be clinically deployed. Also, the material composition allowed for the clamps to maintain the appropriate shape with minimal dimensional shrinkage that can be accounted for in clamp design.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1247
Author(s):  
Juliane Diehm ◽  
Verena Hackert ◽  
Matthias Franzreb

In the last decade, the fabrication of microfluidic chips was revolutionized by 3D printing. It is not only used for rapid prototyping of molds, but also for manufacturing of complex chips and even integrated active parts like pumps and valves, which are essential for many microfluidic applications. The manufacturing of multiport injection valves is of special interest for analytical microfluidic systems, as they can reduce the injection to detection dead volume and thus enhance the resolution and decrease the detection limit. Designs reported so far use radial compression of rotor and stator. However, commercially available nonprinted valves usually feature axial compression, as this allows for adjustable compression and the possibility to integrate additional sealing elements. In this paper, we transfer the axial approach to 3D-printed valves and compare two different printing techniques, as well as six different sealing configurations. The tightness of the system is evaluated with optical examination, weighing, and flow measurements. The developed system shows similar performance to commercial or other 3D-printed valves with no measurable leakage for the static case and leakages below 0.5% in the dynamic case, can be turned automatically with a stepper motor, is easy to scale up, and is transferable to other printing methods and materials without design changes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 703
Author(s):  
Rebeca Leu Alexa ◽  
Horia Iovu ◽  
Bogdan Trica ◽  
Catalin Zaharia ◽  
Andrada Serafim ◽  
...  

The present study investigated the possibility of obtaining 3D printed composite constructs using biomaterial-based nanocomposite inks. The biopolymeric matrix consisted of methacrylated gelatin (GelMA). Several types of nanoclay were added as the inorganic component. Our aim was to investigate the influence of clay type on the rheological behavior of ink formulations and to determine the morphological and structural properties of the resulting crosslinked hydrogel-based nanomaterials. Moreover, through the inclusion of nanoclays, our goal was to improve the printability and shape fidelity of nanocomposite scaffolds. The viscosity of all ink formulations was greater in the presence of inorganic nanoparticles as shear thinning occurred with increased shear rate. Hydrogel nanocomposites presented predominantly elastic rather than viscous behavior as the materials were crosslinked which led to improved mechanical properties. The inclusion of nanoclays in the biopolymeric matrix limited hydrogel swelling due the physical barrier effect but also because of the supplementary crosslinks induced by the clay layers. The distribution of inorganic filler within the GelMA-based hydrogels led to higher porosities as a consequence of their interaction with the biopolymeric ink. The present study could be useful for the development of soft nanomaterials foreseen for the additive manufacturing of customized implants for tissue engineering.


Bioprinting ◽  
2021 ◽  
Vol 21 ◽  
pp. e00117
Author(s):  
Maryam Rezai Rad ◽  
Farahnaz Fahimipour ◽  
Erfan Dashtimoghadam ◽  
Hanieh Nokhbatolfoghahaei ◽  
Lobat Tayebi ◽  
...  

2019 ◽  
Vol 96 ◽  
pp. 105-113 ◽  
Author(s):  
M. Rasoulianboroujeni ◽  
F. Fahimipour ◽  
P. Shah ◽  
K. Khoshroo ◽  
M. Tahriri ◽  
...  

2020 ◽  
Vol 57 (1) ◽  
pp. 13-20
Author(s):  
Adelina Hrituc ◽  
Andrei Mihalache ◽  
Marian Mares ◽  
Margareta Coteata ◽  
Oana Dodun ◽  
...  

The form of the outer and inner surfaces of hollow spherical parts determines the developments of some particular categories of efforts during the compression tests. The overall purpose of the research presented in this paper was to study the behaviour of the hollow spherical parts under axial compression. The PLA hollow spherical parts were obtained by 3D printing and using distinct values for certain process input factors. The finite element method was used to theoretically investigate the behaviour of the parts and it highlighted the total plastic deformation of the test pieces. To experimentally verify the theoretical considerations, an L9 Taguchi orthogonal design was performed. The empirical mathematical model thus determined highlighted the stronger influence exerted by the printing plate temperature, printing speed, and part wall thickness.


Author(s):  
Fahad Alam ◽  
Pawan Verma ◽  
Walaa Mohammad ◽  
Jeremy Teo ◽  
K. M. Varadarajan ◽  
...  

AbstractHerein, we report the physicochemical, thermal, mechanical and biological characteristics, including bioactivity, biodegradation and cytocompatibility of additive manufacturing-enabled novel nanocomposite scaffolds. The scaffolds comprise a blend of polylactic acid (PLA) and poly-ε-caprolactone (PCL) reinforced with halloysite nanotubes (HNTs). The nanoengineered filaments were developed by melt blending, and the nanocomposite scaffolds were manufactured by fused filament fabrication. Uniform dispersion of HNTs in the PLA/PCL blend is revealed via scanning electron microscopy. Mechanical property loss due to the addition of PCL to realize a suitable biodegradation rate of PLA was fully recovered by the addition of HNTs. Bioactivity, as revealed by the fraction of apatite growth quantified from XRD analysis, was 5.4, 6.3, 6.8 and 7.1% for PLA, 3, 5 and 7 wt% HNT in PLA/PCL blend, respectively, evidencing enhancement in the bioactivity. The degradation rate, in terms of weight loss, was reduced from 4.6% (PLA) to 1.3% (PLA/PCL) upon addition of PCL, which gradually increased to 4.4% by the addition of HNTs (at 7 wt% HNT). The results suggest that the biodegradation rate, mechanical properties and biological characteristics, including cytocompatibility and cell adhesion, of the 3D printed, microarchitected PLA/PCL/HNT composite scaffolds can be tuned by an appropriate combination of HNT and PCL content in the PLA matrix, demonstrating their promise for bone replacement and regeneration applications. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document