Mesoporous calcium silicate and titanium composite scaffolds via 3D-printing for improved properties in bone repair

Author(s):  
Kaifeng Xu ◽  
Qingxi Meng ◽  
Lei Li ◽  
Min Zhu
2017 ◽  
Vol 32 (8) ◽  
pp. 837 ◽  
Author(s):  
XIN Chen ◽  
QI Xin ◽  
ZHU Min ◽  
ZHAO Shi-Chang ◽  
ZHU Yu-Fang

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1138
Author(s):  
Xiaofeng Cao ◽  
Wufei Ge ◽  
Yihu Wang ◽  
Ming Ma ◽  
Ying Wang ◽  
...  

Although bone repair scaffolds are required to possess high radiopacity to be distinguished from natural bone tissues in clinical applications, the intrinsic radiopacity of them is usually insufficient. For improving the radiopacity, combining X-ray contrast agents with bone repair scaffolds is an effective method. In the present research, MgNH4PO4·H2O/SrHPO4 3D porous composite scaffolds with improved radiopacity were fabricated via the 3D printing technique. Here, SrHPO4 was firstly used as a radiopaque agent to improve the radiopacity of magnesium phosphate scaffolds. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) were used to characterize the phases, morphologies, and element compositions of the 3D porous composite scaffolds. The radiography image showed that greater SrHPO4 contents corresponded to higher radiopacity. When the SrHPO4 content reached 9.34%, the radiopacity of the composite scaffolds was equal to that of a 6.8 mm Al ladder. The porosity and in vitro degradation of the porous composite scaffolds were studied in detail. The results show that magnesium phosphate scaffolds with various Sr contents could sustainably degrade and release the Mg, Sr, and P elements during the experiment period of 28 days. In addition, the cytotoxicity on MC3T3-E1 osteoblast precursor cells was evaluated, and the results show that the porous composite scaffolds with a SrHPO4 content of 9.34% possessed superior cytocompatibility compared to that of the pure MgNH4PO4·H2O scaffolds when the extract concentration was 0.1 g/mL. Cell adhesion experiments showed that all of the scaffolds could support MC3T3-E1 cellular attachment well. This research indicates that MgNH4PO4·H2O/SrHPO4 porous composite scaffolds have potential applications in the bone repair fields.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2011 ◽  
Vol 6 (3) ◽  
pp. 301-311 ◽  
Author(s):  
Oana Craciunescu ◽  
Christu Tardei ◽  
Lucia Moldovan ◽  
Otilia Zarnescu

AbstractOf great interest in developing artificial bone is the incorporation of magnesium (Mg) ions into the ceramic lattice in order to improve the physico-chemical and structural properties of the material and to increase its morphological affinity towards newly formed osseous tissue. In the present study, we evaluated the morphological and biological properties of composite scaffolds fabricated by mixing a nanopowder of Mg-substituted beta-tricalcium phosphate with collagen type I in two dry weight ratios (variant I and II). We used biochemical methods, and electron and light microscopy to investigate their porosity, biodegradability and morphology. Osteoblast cell culture behavior in the presence of nanocomposite variants was also examined. Variant I scaffold presented a higher percentage of cross-links and a better resistance to collagenase degradation compared to variant II scaffold. Their porosity did not vary significantly. Osteoblasts cultivated in the presence of nanocomposite scaffolds for 72 h exhibited good cell viability and a normal morphology. When osteoblasts were injected into the scaffolds, a slightly higher proportion of adhered cells were observed for Mg-substituted samples after 7 days of cultivation. All these results showed that Mg-containing porous composite scaffolds had controlled degradation, allowed osteoblast proliferation and adhesion and are good candidates for bone repair.


2020 ◽  
Vol 189 ◽  
pp. 108540 ◽  
Author(s):  
Huan Sun ◽  
Cheng Hu ◽  
Changchun Zhou ◽  
Lina Wu ◽  
Jianxun Sun ◽  
...  

2020 ◽  
Vol 22 ◽  
pp. 228-234 ◽  
Author(s):  
Gleb E. Dubinenko ◽  
Alexey L. Zinoviev ◽  
Evgeniy N. Bolbasov ◽  
Viktor T. Novikov ◽  
Sergey I. Tverdokhlebov

Sign in / Sign up

Export Citation Format

Share Document