Properties of gas detonation ceramic coatings and their effect on the osseointegration of titanium implants for bone defect replacement

Author(s):  
Nickolai I. Klyui ◽  
Volodymyr S. Chornyi ◽  
Igor V. Zatovsky ◽  
Liana I. Tsabiy ◽  
Alexander A. Buryanov ◽  
...  
Author(s):  
A A Fomin ◽  
I V Rodionov ◽  
M A Fomina ◽  
N V Petrova

2020 ◽  
pp. 112070002094348
Author(s):  
Rashid Tikhilov ◽  
Igor Shubnyakov ◽  
Alexey Denisov ◽  
Vladimir Konev ◽  
Iosif Gofman ◽  
...  

Introduction: Due to a lack of uniform shapes and sizes of bone defects in hip and knee joint pathology, their fixing could benefit from using individually manufactured 3D-printed highly porous titanium implants. The objective of this study was to evaluate the extent of bone and muscle tissue integration into porous titanium implants manufactured using additive technology. Materials and methods: Porous and non-porous titanium plates were implanted into the latissimus dorsi muscle and tibia of 9 rabbits. On days 1, 60 and 90 animals were examined with x-rays. On day 60 histological tests were carried out. On day 90 the tensile strength at the implant-tissue interface was tested. Results: Histological analysis of muscle samples with porous titanium implants showed integration of connective tissue and blood vessels into the pores. Bone defect analysis demonstrated bone ingrowth into the pores of titanium with a minimal amount of fibrous tissue. The tensile strength of the muscular tissue attachment to the porous titanium was 28 (22–30) N which was higher than that of the control group 8.5 (5–11) N. Bone tissue attachment strength was 148 (140–152) N in the experimental group versus 118 (84–122) N in the control group. Conclusions: Using additive technology in manufacturing 3D-printed highly porous titanium implants improves bone and muscle integration compared with the non-porous material of the control group. This could be a promising approach to bone defect repair in revision and reconstruction surgery.


Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Author(s):  
Ozer Unal

Interest in ceramics as thermal barrier coatings for hot components of turbine engines has increased rapidly over the last decade. The primary reason for this is the significant reduction in heat load and increased chemical inertness against corrosive species with the ceramic coating materials. Among other candidates, partially-stabilized zirconia is the focus of attention mainly because ot its low thermal conductivity and high thermal expansion coefficient.The coatings were made by Garrett Turbine Engine Company. Ni-base super-alloy was used as the substrate and later a bond-coating with high Al activity was formed over it. The ceramic coatings, with a thickness of about 50 μm, were formed by EB-PVD in a high-vacuum chamber by heating the target material (ZrO2-20 w/0 Y2O3) above its evaporation temperaturef >3500 °C) with a high-energy beam and condensing the resulting vapor onto a rotating heated substrate. A heat treatment in an oxidizing environment was performed later on to form a protective oxide layer to improve the adhesion between the ceramic coating and substrate. Bulk samples were studied by utilizing a Scintag diffractometer and a JEOL JXA-840 SEM; examinations of cross-sectional thin-films of the interface region were performed in a Philips CM 30 TEM operating at 300 kV and for chemical analysis a KEVEX X-ray spectrometer (EDS) was used.


Sign in / Sign up

Export Citation Format

Share Document