Assessment of the interphase drag coefficients considering the effect of granular temperature or solid concentration fluctuation via comparison of DNS, DPM, TFM and experimental data

2020 ◽  
Vol 223 ◽  
pp. 115722 ◽  
Author(s):  
Wei Bian ◽  
Xizhong Chen ◽  
Junwu Wang
Author(s):  
Petter Andreas Berthelsen ◽  
Erin E. Bachynski ◽  
Madjid Karimirad ◽  
Maxime Thys

In this paper, a numerical model of a braceless semi-submersible floating wind turbine (FWT) is calibrated against model test data. Experimental data from a 1:30 scaled model tested at MARINTEK’s Ocean Basin in 2015 using real-time hybrid model testing (ReaTHM) is used for the calibration of the time-domain simulation model. In these tests, aerodynamic loads were simulated in real-time and applied to the physical model. The simulation model is based on the as-built model at full scale. The hull and turbine are considered as rigid, while bar elements are used to model the mooring system in a coupled finite element approach. Frequency-dependent added mass, radiation damping, and excitation forces/moments are evaluated using a panel method based on potential theory. Distributed viscous forces on the hull and mooring lines are added to the numerical model applying Morison’s equation. The viscous drag coefficients in Morison’s equation are calibrated against selected test data, including decay tests in calm water and test with irregular waves. Simulations show that the drag coefficients change when waves are present. Aerodynamic loads are included as time varying loads applied directly at the hub based on the actual physical loads from the experiment. This way, uncertainties related to the aerodynamic loads in the calibrations are removed. The calibrated numerical model shows good agreement with experimental data.


2015 ◽  
Vol 12 (04) ◽  
pp. 1540005 ◽  
Author(s):  
Ravi Gujjula ◽  
Narasimha Mangadoddy

This paper presents a numerical study of gas and solid flow in an internally circulating fluidized bed (ICFB). Two-fluid Eulerian model with kinetic theory of granular flow option for solid phase stress closure and various drag laws were used to predict the hydrodynamic behavior of ICFB. 2D and 3D geometries were used to run the simulations. The 2D simulation results by various drag laws show that the Arastoopour and Gibilaro drag models able to predict the fluidization dynamics in terms of flow patterns, void fractions and axial velocity fields close to the experimental data. The effect of superficial gas velocity, presence of draft tube on solid hold-up distribution, solid circulation pattern, and variations in gas bypassing fraction for the 3D ICFB are investigated. The mechanism governing the solid circulation and solids concentration in an ICFB has been explained based on gas and solid dynamics obtained from the simulations. Predicted total granular temperature distributions in the draft tube and annular zones qualitatively agree with experimental data. The total granular temperature tends to increase with increasing solids concentration in the dilute region (ε < 0.1) and decreases with an increase of solids concentration in the dense region (ε > 0.1). In the dense zone, the decreasing trend in the granular temperature is mainly due to the reduction of the mean free path of the solid particles.


1996 ◽  
Vol 464 ◽  
Author(s):  
George D. Cody ◽  
David J. Goldfarb

ABSTRACTWe present new experimental data on the properties of monodispersed glass spheresas a function of sphere diameter and gas flow in a gas fluidized bed. The data obtained by a novel non-intrusive probe of the average particle kinetic energy, or granular temperature, at thewall is used to explore and understand the well known empirical distinction between fluidized particles which exhibit a single phase state at initial fluidization (Geldart A powders) and fluidized particles that exhibit gas bubbles at initial fluidization (Geldart B powders). Specifically we show that the experimental “jump” we observe in the granular temperature atthe Geldart / transition is sufficient to account for the initial stability of the Geldart A phase on the basis of the one dimensional, first order, two wave, stability theory first introduced by Jackson in the early sixties. We present new data on the diameter dependent properties of the glass spheres during bed collapse and bed expansion, which demonstrate the distinctionbetween Geldart A and B behavior for these monodispersed glass spheres. Finally we present a simple Langevin model to account for the dependence of the granular temperature on sphere diameter and gas flow, and discuss the implications of these new experimental data for the fundamental physics of the Geldart A phase.


2010 ◽  
Vol 16 (4) ◽  
pp. 295-308 ◽  
Author(s):  
Sandip Lahiri ◽  
K.C. Ghanta

An attempt has been made in the present study to develop generalized slurry flow model using CFD and utilize the model to predict concentration profile. The purpose of CFD model is to gain better insight into the solid liquid slurry flow in pipelines. Initially a three-dimensional model problem was developed to understand the influence of the particle drag coefficient on solid concentration profile. The preliminary simulations highlighted the need for the correct modelling of the inter phase drag force. The various drag correlations available in literature was incorporated in a two-fluid model (Euler-Euler) along with the standard k-? turbulence model with mixture properties to simulate the turbulent solid-liquid flow in a pipeline. The computational model was mapped on to a commercial CFD solver FLUENT6.2 (of Fluent Inc., USA). To push the envelope of applicability of simulation, the recent data of Kaushal (2005) (with solid concentration up to 50%) was selected to validate the three dimensional simulations. The experimental data consists of water-glass bead slurry at 125& 440 micron particle with different flow velocity (from 1 to 5 m/s) and overall concentration up to 10 to 50% by volume. The predicted pressure drop and concentration profile was validated by experimental data and shows excellent agreement. Interesting findings were come out from the parametric study of velocity and concentration profiles. The computational model and results discussed in this work would be useful for extending the applications of CFD models for simulating large slurry pipelines.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Author(s):  
C. C. Ahn ◽  
D. H. Pearson ◽  
P. Rez ◽  
B. Fultz

Previous experimental measurements of the total white line intensities from L2,3 energy loss spectra of 3d transition metals reported a linear dependence of the white line intensity on 3d occupancy. These results are inconsistent, however, with behavior inferred from relativistic one electron Dirac-Fock calculations, which show an initial increase followed by a decrease of total white line intensity across the 3d series. This inconsistency with experimental data is especially puzzling in light of work by Thole, et al., which successfully calculates x-ray absorption spectra of the lanthanide M4,5 white lines by employing a less rigorous Hartree-Fock calculation with relativistic corrections based on the work of Cowan. When restricted to transitions allowed by dipole selection rules, the calculated spectra of the lanthanide M4,5 white lines show a decreasing intensity as a function of Z that was consistent with the available experimental data.Here we report the results of Dirac-Fock calculations of the L2,3 white lines of the 3d and 4d elements, and compare the results to the experimental work of Pearson et al. In a previous study, similar calculations helped to account for the non-statistical behavior of L3/L2 ratios of the 3d metals. We assumed that all metals had a single 4s electron. Because these calculations provide absolute transition probabilities, to compare the calculated white line intensities to the experimental data, we normalized the calculated intensities to the intensity of the continuum above the L3 edges. The continuum intensity was obtained by Hartree-Slater calculations, and the normalization factor for the white line intensities was the integrated intensity in an energy window of fixed width and position above the L3 edge of each element.


Sign in / Sign up

Export Citation Format

Share Document