Estimating silicate weathering timescales from geochemical modeling and spring water residence time in the Kirishima volcanic area, southern Japan

2018 ◽  
Vol 488 ◽  
pp. 44-55 ◽  
Author(s):  
Kiyoshi Ide ◽  
T. Hosono ◽  
S. Hossain ◽  
J. Shimada
Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Edgaras Ivanauskas ◽  
Andrius Skersonas ◽  
Vaidotas Andrašūnas ◽  
Soukaina Elyaagoubi ◽  
Artūras Razinkovas-Baziukas

The spatial distribution of biomass of main commercial fish species was mapped to estimate the supply of a provisioning fishery service in the Curonian lagoon. Catch per unit effort (CPUE) was used as a proxy to estimate the efficiency of commercial fishing and, subsequently, the potential biomass of fishes. The relationship between distinctive characteristics of the fishing areas and corresponding commercial catches and CPUE was analyzed using multivariate analysis. The total catch values and CPUE used in the analyses were derived from the official commercial fishery records. RDE analysis was used to assess the variation of both catch and CPUE of commercial fish species, while the percentages of bottom sediment type coverage, average depth, annual salinity, and water residence time in each of the fishing squares were used as explanatory variables. This distance e-based redundancy analysis allowed for the use of non-Euclidean dissimilarity indices. Fisheries data spatial distribution map indicated the lack of coherence between the spatial patterns of commercial catches and CPUE distribution in the northern part of the lagoon. Highest CPUE values were estimated in the central-eastern part of the lagoon as compared to the western part of the lagoon where CPUE values were substantially lower. Both total catch and CPUE appeared not to be related to the type of bottom habitats statistically while being spatially correlated in-between. However, the impact of salinity and water residence time calculated using the 3D hydraulic circulation model on the distribution of both CPUE and commercial catches was statistically significant.


Author(s):  
Sutthipong Taweelarp ◽  
Supanut Suntikoon ◽  
Thaned Rojsiraphisal ◽  
Nattapol Ploymaklam ◽  
Schradh Saenton

Scaling in a geothermal piping system can cause serious problems by reducing flow rates and energy efficiency. In this work, scaling potential of San Kamphaeng (SK) geothermal energy, Northern Thailand was assessed based on geochemical model simulation using physical and chemical properties of hot spring water. Water samples from surface seepage and groundwater wells, analyzed by ICP-OES and ion chromatograph methods for chemical constituents, were dominated by Ca-HCO3 facies having partial pressure of carbon dioxide of 10–2.67 to 10–1.75 atm which is higher than ambient atmospheric CO2 content. Surface seepage samples have lower temperature (60.9°C) than deep groundwater (83.1°C) and reservoir (127.1°C, based on silica geothermometry). Geochemical characteristics of the hot spring water indicated significant difference in chemical properties between surface seepage and deep, hot groundwater as a result of mineral precipitation along the flow paths and inside well casing. Scales were mainly composed of carbonates, silica, Fe-Mn oxides. Geochemical simulations based on multiple chemical reaction equilibria in PHREEQC were performed to confirm scale formation from cooling and CO2-degassing processes. Simulation results showed total cumulative scaling potential (maximum possible precipitation) from 267-m deep well was estimated as 582.2 mg/L, but only 50.4% of scaling potential actually took place at SK hot springs. In addition, maximum possible carbon dioxide outflux to atmosphere from degassing process in SK geothermal field, estimated from the degassing process, was 6,960 ton/year indicating a continuous source of greenhouse gas that may contribute to climate change. Keywords: Degassing, Geochemical modeling, PHREEQC, San Kamphaeng Hot Springs, Scaling


2018 ◽  
Vol 82 (3) ◽  
pp. 139 ◽  
Author(s):  
Roberto González-De Zayas ◽  
Martin Merino-Ibarra ◽  
Patricia M. Valdespino-Castillo ◽  
Yunier Olivera ◽  
Sergio F. Castillo-Sandoval

Through a nested suite of methods here we contrast the coexistence of different ecosystem states in a tropical coastal lagoon, the Laguna Larga, with increasing eutrophication stress between 2007 and 2009. Water temperature averaged 27.4°C in the lagoon and showed a slight positive trend during the study period. Salinity averaged 35.0±6.2, exhibiting high spatial and temporal variability, and also a slight positive trend in time. In contrast, dissolved oxygen showed a substantial decreasing trend (–0.83 ml L–1 y–1; –13.3% y–1) over the period, while nutrients increased dramatically, particularly total phosphorus (2.6 µM y–1), in both cases sustaining the progression of eutrophication in the lagoon during the three years we sampled. The Karydis nutrient load-based trophic index showed that the lagoon has a spatial pattern of increasing eutrophication from the sea and the outer sector (oligotrophic-mesotrophic) to the central (mesotrophic) and the inner sector (mesotrophic-eutrophic). Two ecosystem states were found within the lagoon. In the outer oligotrophic sector, the dominant primary producers were macroalgae, seagrasses and benthic diatoms, while mollusc assemblages were highly diverse. In the inner and central sectors (where trophic status increased toward the inner lagoon) a phytoplankton-dominated ecosystem was found where mollusc assemblages are less diverse. In spite of the progression of eutrophication in the lagoon, these two different ecosystems coexisted and remained unchanged during the study period. Apparently, the effect of water residence time, which increases dramatically toward the inner lagoon, dominated over that of nutrient loadings, which is relatively more homogeneously distributed along the lagoon. Therefore, we consider that actions that reduce the water residence time are likely the most effective management options for this and other similarly choked lagoons.


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0209567 ◽  
Author(s):  
Jonathan P. Doubek ◽  
Cayelan C. Carey ◽  
Michael Lavender ◽  
Amanda K. Winegardner ◽  
Marieke Beaulieu ◽  
...  

2020 ◽  
Author(s):  
Isabela Silveira Baptista ◽  
Maki Tsujimura ◽  
Yuichi Onda

<p>Treatments on plantation forests, such as thinning, have a significant effect on the quality and quantity of water resources in the watersheds in Japan. However, few studies have performed intensive observations regarding the effects of thinning on the groundwater flow process with combined use of tracers, specially over a long period of time.</p><p>In this study, stable isotope analysis and hydrological observations were applied to investigate the temporal variation of spring water and groundwater mean residence time in a small watershed at Mount Karasawa, Tochigi Prefecture, Japan. We have monitored the research area since 2010, with periodical sampling once a month for 9 years, with a lack of data in some years after the thinning.  We analyzed the date for three different time periods, those are: Before Thinning, from July 2010 to September 2011, Soon After Thinning, from November 2011 to October 2013 and Long After Thinning, from September 2017 to August 2019.</p><p>The mean residence time of spring water and groundwater were evaluated by using the stable isotopes of hydrogen and oxygen as tracers, then estimating their d-excess variations using two Lumped-Parameter Models, Exponential-Piston Flow Model and Dispersion Model. The SF<sub>6</sub> concentrations were used as an Apparent Age analysis for determination of the model’s parameters. Both models show a tendency of the mean residence time getting older Soon After Thinning and then getting younger again Long After Thinning.</p><p>According to a selection of the best model for this area, the Exponential-Piston Flow Model shows that the spring water mean residence time was 25 months Before Thinning, 30 months Soon After Thinning and 26 months Long After Thinning; the groundwater at 15m deep mean residence time was 39 months Before Thinning, 46 months Soon After Thinning and 38 months Long After Thinning and the groundwater at 30m deep mean residence time was 38 months Before Thinning, 47 months Soon After Thinning and 45 months Long After Thinning. These results suggest that Soon After Thinning there is a reduction of forest interception and tree evapotranspiration, leading to an increase in infiltration and groundwater storage. Then, Long After Thinning, the forest interception and tree evapotranspiration rise back again with the recovery of the understory vegetation, which leads to a decrease in infiltration and groundwater storage.</p>


Sign in / Sign up

Export Citation Format

Share Document