Nitrogen removal from Lake Caohai, a typical ultra-eutrophic lake in China with large scale confined growth of Eichhornia crassipes

Chemosphere ◽  
2013 ◽  
Vol 92 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Zhi Wang ◽  
Zhiyong Zhang ◽  
Yingying Zhang ◽  
Junqian Zhang ◽  
Shaohua Yan ◽  
...  
1999 ◽  
Vol 33 (10) ◽  
pp. 2357-2362 ◽  
Author(s):  
Nguyen Ngoc Bich ◽  
Mohammad Ismail Yaziz ◽  
Nordin Abdul Kadir Bakti

2013 ◽  
Vol 6 (2) ◽  
pp. 243-249 ◽  
Author(s):  
John E. Montoya ◽  
Tina M. Waliczek ◽  
Michael L. Abbott

AbstractThe intent of this study was to determine if composting is an effective means of managing water hyacinth while producing a quality horticultural compost product. Preliminary tests for the study included germination and seed mortality tests. Germination tests found that water hyacinth seeds germinated on filter paper media soaked in distilled water while placed in petri dishes held at a constant temperature of 27 C for 14 d. Seed mortality test results found that seeds of water hyacinth were rendered inviable at temperatures equal to or above 57 C. The study successfully developed a large-scale composting system that used water hyacinth as a primary feedstock. Eleven compost piles were derived from 10,000 kg of water hyacinth, 9,000 kg of food waste, 11,300 kg of poultry litter, and 17,200 kg of wood chips. Results indicated that the composting process reached and sustained sufficiently high enough temperatures to inactivate and fully decompose seeds and other propagules of water hyacinth. Therefore, water hyacinth can be composted without the potential danger of it spreading. Compost quality tests found that the compost produced was within acceptable to ideal ranges of accepted industry quality standards, though there was a learning curve by student workers in the preparation of the piles using the large equipment.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 46 ◽  
Author(s):  
Weiping Su ◽  
Qingping Sun ◽  
Meisheng Xia ◽  
Zhengshun Wen ◽  
Zhitong Yao

The unchecked growth of Eichhornia crassipes can cause significant harm, including covering of the water surface, depletion of oxygen, clogging of river channels, and promotion of the breeding of flies and mosquitoes. These effects can significantly impact farmland irrigation, water transportation, and human health. However, methods for controlling its growth are not ideal, and control using biological and chemical agents can result in secondary pollution. The utilization of E. crassipes as a resource, for example, as animal feed or organic substrates, can not only turn waste into valuable resources, but it can also solve the problem of its growth, thus bringing about economic and ecological benefits. In this paper, the growth and ecological characteristics of E. crassipes, its nutrient composition, and resource utilization approaches were reviewed. The challenges associated with the large-scale utilization of E. crassipes were also analyzed in order to provide references for the control and resource utilization of the species. Regarding challenges such as the difficulty of cultivation and the high cost of harvesting and dehydrating, it is necessary to investigate the proper water surface and coverage characteristics of E. crassipes cultivation to assure adequate biomass and protect the ecological landscape. It is also necessary to evaluate the effect of E. crassipes cultivation on the health of aquatic ecosystems and the safety of the water environment in order to prevent the significant potential ecological and environmental risks. In addition, developing portable, high-efficiency facilities to promote the effectiveness of harvesting, transportation and dehydration are needed, as well as further improvement in the techniques of utilization and assessment of the economic value.


2013 ◽  
Vol 61 ◽  
pp. 224-234 ◽  
Author(s):  
Ed J. Dunne ◽  
Michael F. Coveney ◽  
Erich R. Marzolf ◽  
Victoria R. Hoge ◽  
Roxanne Conrow ◽  
...  

Author(s):  
K. Dölle ◽  
Q. Wang ◽  
J. Tong

Clean water is one of the most significant challenges for our society. Efficient reuse of effluent water after treatment can becomes an effective solution to the shortage of water resources. The focus of this study is to investigate the use of Eichhornia crassipes plants for post treatment of clarified municipal residential sewage under natural conditions using a small pilot Laboratory Water Hyacinth Clarifier system. Twelve Eichhornia crassipes plants are used to investigate total phosphorus and ammonia nitrogen removal during a 20-day study period under various retention rates. The biomass gain of the Eichhornia crassipes plants was 2.4-fold from the initial weight of 1556.5 g to 3676.7 g. Total phosphorous reduction of 10.64%, 11.83%, 20.93%, 41.66%, 67.12%, and 40.13% for the 1.5, 9.0, 12.0, 24.0, 48.0 h, and 120.0-hour retention times respectively. Ammonia nitrogen removal was between 35.71%, 33.33% for the 1.50 and 9.0-hour retention time and 42.85% for the 12.0 and 24.0-hour retention time. A reduction of 71.43% resulted for the 48.0-hour retention time and an 85.71% reduction for the 120.0-hour retention time. Overall retention time of 24.0 h, 48.0 h and 120 h tend to give best removal rates for both total phosphorus and ammonia nitrogen removal. Factors such as climate, contaminant concentration, retention rate, and weather conditions play an important role for the application of Eichhornia crassipes in a tertiary treatment sequence of MRS.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 127-135 ◽  
Author(s):  
M. Bonhomme ◽  
F. Rogalla ◽  
G. Boisseau ◽  
J. Sibony

To upgrade existing activated sludge treatment plants, different techniques that would remove an important flux of nitrogen rapidly on a great number of units were investigated. Nitrification with conventional activated sludge systems requires considerable multiplication of tankage volume. The necessary investment and space is not always available, especially since many older plants are now in urbanized areas. To lower the nitrogen load in receiving water, the first priority should be to obtain partial nitrogen removal with existing plants, using methods that are simple to adapt.Three techniques were tested on large scale: submerged elements in aeration basin to add fixed biomass, contact stabilisation that allows a higher sludge age in the same tankage volume, and adding submerged biotower packings as a tertiary aeration stage. In a full scale unit (4000 m3/d), one complete section of the plant fitted with biofilter packing was operated in parallel with a similar unmodified section as reference. The volume occupied by the fixed beds was varied between 20 and 40 % of the tank. The submerged elements improved removal efficiency, to maintain effluent quality at higher loadings or obtain lower residual pollution values in existing plants. The biofilm evolution and the hydraulic behaviour of the packing was followed. No significant change in sludge settleability was observed, but fixed biomass addition reduced sludge production because of a lower overall mass loading. The resulting higher sludge age allowed the ammonia oxidizers to remain in the mixed population beyond usual F/M limits, but no installation of nitrifiers on the support media could be observed. To verify the limits of immersed plastic surfaces for nitrification, an aerated column was fed with effluent of a highly loaded activated sludge plant. In opposition to carriers submerged in mixed liquor, nitrifier attachment was obtained, and COD and SS removal for effluent polishing was achieved. With a carbon loading exceeding 1,5 kg COD/m3 d, a maximum oxidation rate of 0,4 kg N-NH4/m3 d could be obtained. A pilot unit was tested to assess the potential volume reduction for nitrogen elimination by contact stabilisation. This configuration stores the highly concentrated return sludge in a reaeration basin, and keeping only the minimum detention time in the contact basin to obtain nitrification. Also, an increased carbon load in the contact basin enhances denitrification. For urban wastewaters with a COD/N ratio of about 10, complete oxidation and partial removal of nitrogen were obtained with a volume loading of 1,5 kg COD/m3 d. Nitrogen removal rates of 0,15 kg N/m3 d were measured both in the anoxic and the aerobic part of the contact basin. The contact stabilisation mode was then tested on full scale combined with submerged biomass carriers. A consistant nitrogen elimination of 50 % was obtained with aeration detention times of about 4 hours.


2018 ◽  
Vol 69 (10) ◽  
pp. 1534 ◽  
Author(s):  
Barbara Leoni ◽  
Veronica Nava ◽  
Martina Patelli

Achieving a better understanding of the role of climate change in altering population phenology, seasonal cycles in freshwater organisms, and ecosystem structure and function is of high scientific and economic value. The present paper has demonstrated the different food-web responses to teleconnection indices, which are proxy of climate fluctuations, in lakes characterised by different trophic levels. We analysed an 18-year long-term dataset (1998–2015) recorded in the deep eutrophic Lake Iseo and we compared our results to those concerning deep southern-Alpine oligotrophic lakes. Our results confirmed that winter large-scale circulation patterns (for Mediterranean area: East Atlantic Pattern and Eastern Mediterranean Pattern) control a chain of linked causal factors, affecting the winter air temperature, spring water temperature, the resulting water vertical-mixing depth and epilimnetic concentration of total phosphorus. We highlighted that in a lake, characterised by high phosphorus concentration, the spring enrichment in nutrients did not result in either a considerable increase of phytoplankton growth, nor, consequently, in a zooplankton density peak. Whereas in oligotrophic lakes, cascading effects influenced the algal carrying capacity and Daphnia population density. We observed that climatic fluctuations, mediated by, for example, colder water temperature in spring, postponed the timing of population recovery after diapause of both primary consumers (Daphnia and Eubosmina) and secondary consumers (Bythotrephes and Leptodora). The latter being verified for the first time in a eutrophic lake.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Pradyut Kundu ◽  
Arnab Pramanik ◽  
Arpita Dasgupta ◽  
Somnath Mukherjee ◽  
Joydeep Mukherjee

A heterotrophic carbon utilizing microbe (R31) capable of simultaneous nitrification and denitrification (SND) was isolated from wastewater of an Indian slaughterhouse. From an initial COD value of 583.0 mg/L, 95.54% was removed whilst, from a startingNH4+-N concentration of 55.7 mg/L, 95.87% was removed after 48 h contact. The concentrations of the intermediates hydroxylamine, nitrite, and nitrate were low, thus ensuring nitrogen removal. Aerobic denitrification occurring during ammonium removal by R31 was confirmed by utilization of both nitrate and nitrite as nitrogen substrates. Glucose and succinate were superior while acetate and citrate were poor substrates for nitrogen removal. Molecular phylogenetic identification, supported by chemotaxonomic and physiological properties, assigned R31 as a close relative ofChryseobacterium haifense. TheNH4+-N utilization rate and growth of strain R31 were found to be higher at C/N = 10 in comparison to those achieved with C/N ratios of 5 and 20. Monod kinetic coefficients, half saturation concentration(Ks), maximum rate of substrate utilization(k), yield coefficient,(Y)and endogenous decay coefficient(Kd)indicated potential application of R31 in large-scale SND process. This is the first report on concomitant carbon oxidation, nitrification, and denitrification in the genusChryseobacteriumand the associated kinetic coefficients.


Sign in / Sign up

Export Citation Format

Share Document