scholarly journals Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier

Chemosphere ◽  
2021 ◽  
pp. 131470
Author(s):  
Yulin Li ◽  
Mengyu Shao ◽  
Manhong Huang ◽  
Wenjing Sang ◽  
Shengyang Zheng ◽  
...  
2019 ◽  
Vol 20 (3) ◽  
pp. 1526-1533 ◽  
Author(s):  
Weikang Yao ◽  
Zongping Cai ◽  
Shuiyu Sun ◽  
Martin Romantschuk ◽  
Aki Sinkkonen ◽  
...  

Author(s):  
A. Ribeiro ◽  
C. Vilarinho ◽  
J. Araújo ◽  
J. Carvalho

Soil is a vital natural resource that regulates our environment sustainability and provide essential resources to humans and nature. Nowadays, with an increasingly populated and urbanized world, pollution is widely recognized as a significant challenge to soil and groundwater resources management. The most common chemicals found in soils and water plumb in a dissolved state and considered as potential pollutants are heavy metals, dyes, phenols, detergents, pesticides, polychlorinated biphenyls (PCBs), and others organic substances, such as organic matter. Unlike organic contaminants, heavy metals are not biodegradable and tend to accumulate in living organisms and many heavy metal ions are known to be toxic or carcinogenic. Toxic heavy metals of particular concern zinc, copper, nickel, mercury, cadmium, lead and chromium. Electrokinetic remediation deserves particular attention in soil treatment due to its peculiar advantages, including the capability of treating fine and low permeability materials, and achieving consolidation, dewatering and removal of salts and inorganic contaminants like heavy metals in a single stage. In this study, the remediation of artificially chromium contaminated soil by electrokinetic process, coupled with Eggshell Inorganic Fraction Powder (EGGIF) permeable reactive barrier (PRB), was investigated. An electric field of 2 V cm−1 was applied and was used an EGGIF/soil ratio of 30 g kg−1 of contaminated soil for the preparation of the permeable reactive barrier (PRB) in each test. Results proved that the study of chromium mobility revealed the predominance in its transportation through the soil towards the anode, due essentially to the existence of chromium in the form of oxyanions (chromate and dichromate), which confers a negative charge to the molecule. Chromium removal by electrokinetic remediation was faster in low levels of concentration and the utilization of citric acid as buffer and complexing agent allowed to maintain pH of soil below the precipitation limit for this element. It was obtained high removal rates of chromium in both experiments, especially near the anode. In the normalized distance to cathode of 0.8 it was achieved a maximum removal rate of chromium of 55, 59 and 60% in initial chromium concentration of 500 mg kg−1, 250 mg kg−1 and 100 mg kg−1, respectively. The viability of the new coupling technology developed (electrokinetic with EGGIF permeable reactive barrier) to treat low-permeability polluted soils was demonstrated. Based on the proved efficiency, this remediation technique has to be optimized and applied to real soils in order to validate it as a large-scale solution.


1998 ◽  
Vol 37 (8) ◽  
pp. 65-71 ◽  
Author(s):  
Ruey-an Doong ◽  
Ya-Wen Wu ◽  
Wen-gang Lei

An investigation involving the addition of surfactant to remediate cadmium-contaminated soils was performed to determine the optimal surfactant enhanced remediation system. Anionic (sodium dodecyl sulfate, SDS), nonionic (Triton X-100, TX100) and cationic (cetyltrimethylammonium bromide, CTAB) surfactants were used to elucidate the extraction efficiency of surfactant. EDTA and diphenylthiocarbazone (DPC) were also added to enhance the extraction efficiencies of surfactants. Moreover, the pH effect was examined to determine the optimal surfactant systems. The addition of anionic and nonionic surfactants can enhance the desorption rates of cadmium, lead and zinc, whereas the addition of cationic surfactant decreased the desorption efficiency of heavy metals. The desorption efficiency was found to increase linearly with the increasing surfactant concentration below critical micelle concentration (CMC) and remained relatively constant above the CMC. Moreover, the addition of EDTA can significantly enhance the desorption efficiency of heavy metals. Cationic surfactant was shown to be a more effective surfactant than nonionic and anionic surfactants in extracting heavy metals under acidic environment. The desorption efficiency of heavy metal in the surfactant/EDTA mixture system was in the order of Cd > Pb > Zn. However, the addition of DPC lowered the heavy metal removals by 2 to 4 times. Also, increasing pH value can decrease the extraction capabilities of nonionic and anionic surfactants. The results of this study demonstrate that surfactant in combination with complexing agents can be effectively used as chemical amendments to flush cadmium-contaminated soil by proper selection of type and concentration of surfactant and complexing agent at different pH values.


2020 ◽  
Vol 57 (2) ◽  
pp. 109-114
Author(s):  
Amirhossein Dolatzadeh khiyavi ◽  
Reza Hajimohammadi ◽  
Hossein Amani ◽  
Hadi Soltani

2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


2021 ◽  
Vol 11 (4) ◽  
pp. 1799
Author(s):  
Claudio Cameselle ◽  
Susana Gouveia ◽  
Adrian Cabo

The electrokinetic remediation of an agricultural soil contaminated with heavy metals was studied using organic acids as facilitating agents. The unenhanced electrokinetic treatment using deionized water as processing fluid did not show any significant mobilization and removal of heavy metals due to the low solubilization of metals and precipitation at high pH conditions close to the cathode. EDTA and citric acid 0.1 M were used as facilitating agents to favor the dissolution and transportation of metals. The organic acids were added to the catholyte and penetrated into the soil specimen by electromigration. EDTA formed negatively charged complexes. Citric acid formed neutral metal complexes in the soil pH conditions (pH = 2–4). Citric acid was much more effective in the dissolution and transportation out of the soil specimen of complexed metals. In order to enhance the removal of metals, the concentration of citric acid was increased up to 0.5 M, resulting in the removal of 78.7% of Cd, 78.6% of Co, 72.5% of Cu, 73.3% of Zn, 11.8% of Cr and 9.8% of Pb.


Sign in / Sign up

Export Citation Format

Share Document