scholarly journals Biochar-N fertilizer interaction increases N utilization efficiency by modifying soil C/N component under N fertilizer deep placement modes

Chemosphere ◽  
2021 ◽  
pp. 131594
Author(s):  
Hao Xia ◽  
Muhammad Riaz ◽  
Mengyang Zhang ◽  
Bo Liu ◽  
Yuxuan Li ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


2019 ◽  
Vol 47 (4) ◽  
pp. 1400-1408
Author(s):  
Lulu MA ◽  
Qiang ZHANG ◽  
Jiao LIN ◽  
Wei SU ◽  
Caixia YIN ◽  
...  

Due to the indeterminate growth habit of cotton crops, a better understanding of N status at the rational fertilizer regime is important to promote lint yield. The fertilizer-response model was employed to evaluate N status by analyzing data of shoot dry mass, N content and N concentration at different growing stages. A field study was conducted on drip-irrigated cotton plants with N fertilizer addition in total amounts of 0 (N0), 120 (N1), 240 (N2), 360 (N3) and 480 (N4) kg ha-1 in Xinjiang, China in 2016. Thirty percent of total fertilizers were applied at planting and the rest 70% were applied over six applications. The N fertilizer treatment at the accumulative rate of 70 kg ha-1 was enough to induce the N status of steady state accumulation 60 days after germination. Since 90 days the treatments that delivered the N amount between 120 and 240 kg ha-1 was deficient for cotton demand, higher rates from 360 and 480 kg ha-1 induced inherent N reserve and resulted in the highest level of yield. With regard to the practical meaning, the N fertilizer dose of 360 kg ha-1 can be used for cotton growth. The N fertilizer dose of 120 kg ha-1 can be recommended when the yield of 5,840 kg ha-1 lint can meet the goal of cotton culture.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2002 ◽  
Vol 139 (3) ◽  
pp. 231-243 ◽  
Author(s):  
A. J. A. VINTEN ◽  
B. C. BALL ◽  
M. F. O'SULLIVAN ◽  
J. K. HENSHALL

The effects of ploughing or no-tillage of long-term grass and grass-clover swards on changes in organic C and N pools and on CO2 and denitrified gas emissions were investigated in a 3-year field experiment in 1996–99 near Penicuik, Scotland. The decrease in soil C content between 1996 and 1999 was 15·3 t/ha (95% confidence limits were 1·7–28·9 t/ha). Field estimates of CO2 losses from deep-ploughed, normal-ploughed and no-tillage plots were 3·1, 4·5 and 4·6 t/ha over the sampling periods (a total of 257 days) in 1996–98. The highest N2O fluxes were from the fertilized spring barley under no-tillage. Thus no-tillage did not reduce C emissions, caused higher N2O emissions, and required larger inputs of N fertilizer than ploughing. By contrast, deep ploughing led to smaller C and N2O emissions but had no effect on yields, suggesting that deep ploughing might be an appropriate means of conserving C and N when leys are ploughed in. Subsoil denitrification losses were estimated to be 10–16 kg N/ha per year by measurement of 15N emissions from incubated intact cores. A balance sheet of N inputs and outputs showed that net N mineralization over 3 years was lower from plots receiving N fertilizer than from plots receiving no fertilizer.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yihong Gao ◽  
Zuopeng Xu ◽  
Lanjun Zhang ◽  
Shance Li ◽  
Shaogan Wang ◽  
...  

Abstract Nitrogen (N) is a macronutrient that boosts carbon (C) metabolism and plant growth leading to biomass accumulation. The molecular connection between nitrogen utilization efficiency (NUE) and biomass production remains unclear. Here, via quantitative trait loci analysis and map-based cloning, we reveal that natural variation at the MYB61 locus leads to differences in N use and cellulose biogenesis between indica and japonica subspecies of rice. MYB61, a transcriptional factor that regulates cellulose synthesis, is directly regulated by a known NUE regulator GROWTH-REGULATING FACTOR4 (GRF4), which coordinates cellulosic biomass production and N utilization. The variation at MYB61 has been selected during indica and japonica domestication. The indica allele of MYB61 displays robust transcription resulting in higher NUE and increased grain yield at reduced N supply than that of japonica. Our study hence unravels how C metabolism is linked to N uptake and may provide an opportunity to reduce N use for sustainable agriculture.


1967 ◽  
Vol 13 (10) ◽  
pp. 1343-1349 ◽  
Author(s):  
R. Rodriguez-Kabana ◽  
E. A. Curl ◽  
H. H. Funderburk Jr.

The effect of atrazine (2-chloro-4-ethylamino-6-isopropylamino-.s-triazine) on growth of Sclerotium rolfsii and Trichoderma viride was studied in liquid culture. The fungi were grown in Czapek solution containing 0, 8, 20, 40, and 80 μg of the herbicide per milliliter, and growth responses were measured at intervals of 3–5 days after inoculation. Mycelial dry weight of S. rolfsii was little affected at concentrations below 40 μg/ml, but was decreased at the higher concentrations. Total mycelium produced by T. viride was greater with all atrazine treatments than in the control. For S. rolfsii, the efficiency of utilization (economic coefficient) of glucose, inorganic P, and NO3-N with atrazine at 8 μg/ml was slightly higher than that of the control, but was significantly reduced at higher concentrations. Values for glucose utilization efficiency in T. viride increased with herbicide at 8 and 20 μg/ml, then decreased considerably at other concentrations, but remained higher than the control; a similar pattern was revealed for P and NO3-N utilization. Titratable acidity in the medium increased for both fungi with increased atrazine concentration.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3170
Author(s):  
Maqsood Sadiq ◽  
Usama Mazhar ◽  
Ghulam Abbas Shah ◽  
Zeshan Hassan ◽  
Zahid Iqbal ◽  
...  

Currently, the global agriculture productivity is heavily relied on the use of chemical fertilizers. However, the low nutrient utilization efficiency (NUE) is the main obstacle for attaining higher crop productivity and reducing nutrients losses from these fertilizers to the environment. Coating fertilizer with micronutrients and biopolymer can offer an opportunity to overcome these fertilizers associated problems. Here, we coated urea with zinc sulphate (ZnS) and ZnS plus molasses (ZnSM) to control its N release, decrease the ammonia (NH3) volatilization and improve N utilization efficiency by sunflower. Morphological analysis confirmed a uniform coating layer formation of both formulations on urea granules. A slow release of N from ZnS and ZnSM was observed in water. After soil application, ZnSM decreased the NH3 emission by 38% compared to uncoated urea. Most of the soil parameters did not differ between ZnS and uncoated urea treatment. Microbial biomass N and Zn in ZnSM were 125 and 107% higher than uncoated urea, respectively. Soil mineral N in ZnSM was 21% higher than uncoated urea. Such controlled nutrient availability in the soil resulted in higher sunflower grain yield (53%), N (80%) and Zn (126%) uptakes from ZnSM than uncoated fertilizer. Hence, coating biopolymer with Zn on urea did not only increase the sunflower yield and N utilization efficiency but also meet the micronutrient Zn demand of sunflower. Therefore, coating urea with Zn plus biopolymer is recommended to fertilizer production companies for improving NUE, crop yield and reducing urea N losses to the environment in addition to fulfil crop micronutrient demand.


Genetika ◽  
2020 ◽  
Vol 52 (2) ◽  
pp. 585-596
Author(s):  
Vesna Dragicevic ◽  
Snezana Mladenovic-Drinic ◽  
Milena Simic ◽  
Milan Brankov ◽  
Zoran Dumanovic ◽  
...  

Nitrogen (N) is an important element for many physiological processes in crops, and grain yield realisation. Nitrogen loss could be significant through leaching and evaporation, and from this reason lower quantities for fertilization are required. A genotype could be an important source for improved N management in crops. Breeding for high yield and nutrient-efficient genotypes is the most important strategy to enable food security, resolve resource scarcity and environmental pollution. Variability of 36 maize lines grown in optimal and low-N (without fertilization) conditions was assessed through grain yield, 1000 kernel weight, N utilization efficiency (NUtE) and N apparent recovery fraction (nitrogen use efficiency - NUE), during seasons 2017 and 2018. The genotype and year are important sources for variation of grain yield, 1000 kernel weight and NUtE, as a factor which defines N utilization efficiency. The lines, such as L1, L6, L13, L16, L26, L27, L32 and L34 are able to achieve higher grain yield when grown on low-N. Furthermore, L16, L22, L24 and L26 have high NUtE values in both experimental years (even in 2017, season with low and unequal precipitation level), especially in low-N treatment. From that point of view, they could be characterized as efficient N users, even in low-N conditions, as well as tolerant to stressful conditions. Nevertheless, L1, L6 and L27 are the lines with negative NUE, what gives them attribute as the best N users in low-N conditions. Based on the similarity of NUtE values, the genotypes such as L2, L3, L4, L8, L11, L12, L14, L15, L16, L18, L19, L24, L26, L32, L33, L34could be considered as the primary focus for further breeding programs, due to the fact that they don?t have only improved NUE, but also high grain yield (even in unfavourable years), which indicates improved tolerance to various abiotic stressful factors.


2018 ◽  
Vol 3 (1) ◽  
pp. 485-492 ◽  
Author(s):  
Chunmei Wang ◽  
Yiguang Zhao ◽  
Aurélie Aubry ◽  
Gareth Arnott ◽  
Fujiang Hou ◽  
...  

Abstract The objective of this study was to evaluate if high-quality grass could sustain a similar feeding efficiency to concentrate meals for two breeds of lowland ewe lambs. Sixteen lowland ewe lambs of approximately 13 mo age and 61.5 ± 5.28 kg live weight were used in a 2 × 2 factorial study, with 2 diets (fresh perennial ryegrass [Lolium perenne] vs. fresh perennial ryegrass plus 0.5 kg/d fresh concentrate) × 2 breeds (Highlander vs. Texel). Grass was cut daily in the morning from a single zero-grazing sward and offered ad libitum. The animals were individually housed in pens and fed experimental diets for an adaptation phase of 19 d, and then transferred to respiration calorimeter chambers, remaining there for 5 d, with feed intake, feces and urine outputs, and methane (CH4) emissions measured during the final 4 d. There were no significant interaction effects between diets and breeds on any variables. Ewe lambs offered 0.5 kg/d concentrate supplementation had slightly greater DM intake and energy (GE, DE, and ME) intake, but had significantly higher N intake and N excretion in feces and urine than those fed the grass-only diet. However, diets had no significant effects on nutrient digestibility, energy or N utilization, or CH4 emission. Texel breed had a significantly lower DM intake and CH4 emissions per kg live weight, whereas the breed had no significant effect on nutrient digestibility or energy or N utilization. These results implicate that good quality grass could sustain high nutrient utilization efficiency as effectively as diets supplemented with concentrates for ewe lamb production. The two breeds of lowland ewe lambs can utilize good quality grass at a similar level of efficiency.


2007 ◽  
Vol 55 (3) ◽  
pp. 383-391 ◽  
Author(s):  
M. Venugopalan ◽  
K. Hebbar ◽  
P. Tiwary ◽  
S. Chatterji ◽  
V. Ramamurthy ◽  
...  

A field experiment was conducted under rainfed conditions, on a shallow soil (Inceptisol) underlain with weathered basalt and on a deep soil (Vertisol) to evaluate three cotton cultivars [AKH 4 ( Gossypium arboreum ), LRK 516 ( G. hirsutum ) and NHH 44 (intra- hirsutum hybrid)] under four levels of N (0, 40, 80 and 120 kg ha −1 ) and to analyse the variations in productivity using the nitrogen use efficiency (NUE) parameter. The yield of AKH4 and NHH 44 was 101 and 89% higher than that of LRK 516. The yield and the response to N were higher on the Inceptisol. The enhanced yield and NUE of AKH 4 and NHH 44 were attributed to the improved efficiency of N uptake utilization. NUE declined from 21.6 at 40 kg ha −1 to 7.7 at 120 kg N ha −1 . The N uptake efficiency and N utilization efficiency were independent of each other, but complemented each other in improving NUE. The implications of variations in NUE, N uptake efficiency and N utilization efficiency and their components, N biomass production efficiency and HI, in cotton breeding and agronomy are also discussed.


Sign in / Sign up

Export Citation Format

Share Document