On the quantitative phase analysis and amorphous content of triacylglycerols materials by X-ray Rietveld method

2018 ◽  
Vol 212 ◽  
pp. 51-60 ◽  
Author(s):  
Guilherme A. Calligaris ◽  
Thais L.T. da Silva ◽  
Ana Paula B. Ribeiro ◽  
Adenilson O. dos Santos ◽  
Lisandro P. Cardoso
2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Matthew R. Rowles

The quality of X-ray powder diffraction data and the number and type of refinable parameters have been examined with respect to their effect on quantitative phase analysis (QPA) by the Rietveld method using data collected from two samples from the QPA round robin [Madsen, Scarlett, Cranswick & Lwin (2001). J. Appl. Cryst. 34, 409–426]. From the analyses of these best-case-scenario specimens, a series of recommendations for minimum standards of data collection and analysis are proposed. It is hoped that these will aid new QPA-by-Rietveld users in their analyses.


2006 ◽  
Vol 9 (4) ◽  
pp. 369-374 ◽  
Author(s):  
Terezinha Ferreira de Oliveira ◽  
Roberto Ribeiro de Avillez ◽  
Eugenio Kahn Epprecht ◽  
Joaquim Carlos Barbosa Queiroz

2017 ◽  
Vol 898 ◽  
pp. 2054-2059
Author(s):  
Yan Ling Gan ◽  
Su Ping Cui ◽  
Ya Li Wang ◽  
Hong Xia Guo

For cement-matrix materials, the microstructure plays a vital important role in the research. Recently, quantitative phase analysis of cementitious materials can be performed using the Rietveld method by fitting the calculated X-ray diffraction (XRD) profile with the observed one. The aim of this paper is to further perform the quantitative analysis by the Rietveld method and discuss the influence of testing factors on the Rietveld quantitative phase analysis. The factors included the collection range of pattern, step size and the scan time of per step. In this study, the chemical composition of the samples was determined by X-ray fluorescence (XRF) spectrometry. And their phase composition was calculated by X-ray powder diffraction and Rietveld analysis. The results showed that the collection range of pattern depended on the tested materials , and the scanning range should include the main diffraction peak of the sample. Smaller step size and longer scan time of each step made the fitting factor smaller, also the calculated pattern coincided with the measured pattern, better enhance the precision of the analyses.


2014 ◽  
Vol 881-883 ◽  
pp. 1241-1244
Author(s):  
Wei Jin Zeng ◽  
Chao Zeng ◽  
Wei He

The quantitative phase analyses of a slag have been successfully carried out by using both of the full-profile Rietveld and RIR methods from X-ray powder diffraction data. The qualitative phase analysis indicates that the slag contains mayenite (CaO)12(Al2O3)7, olivine Ca2(SiO4), gehlenite Ca2Al (AlSiO7), lemite Ca2(SiO4) and hibonite CaO(Al2O3)6. The quantitative analysis from Rietveld refinement shows that the weight concentrations of mayenite, olivine, gehlenite, lemite and hibonite for the slag are 48.8(4) wt.%, 32.2(5) wt.%, 11.0(9) wt.%, 6.2(1.1) wt.% and 1.8 (1.2) wt.%, respectively. The quantitative phase analysis results obtained by Rietveld method are more precise then those by RIR method.


2013 ◽  
Vol 47 (1) ◽  
pp. 136-145 ◽  
Author(s):  
Andrea Bernasconi ◽  
Monica Dapiaggi ◽  
Alessandro F. Gualtieri

The accuracy of quantitative phase analysis (QPA) of samples with dominant amorphous content, reproducing zircon-rich sanitary-ware glazes, has been investigated. X-ray powder diffraction (XRPD) methods were applied using both conventional Cu Kα radiation and high-resolution synchrotron data. In this work, a combination of the reference intensity ratio (RIR) and Rietveld methods was applied to an artificial mixture (90 wt% glass, 10 wt% zircon), taking into account some of the most common effects that may affect the accuracy in amorphous quantification, such as the degree of crystallinity of the phases, microabsorption and sample preparation. Certified NIST SRM 676a (α-Al2O3) [Cline, Von Dreele, Winburn, Stephens & Filliben (2011).Acta Cryst.A67, 357–367] was used to quantify the amorphous content in zircon and in the different internal standards commonly used when a certified standard is not available or not applicable: the results show that all of the phases invariably contain amorphous material in the range 2.0–15.0 wt%. If the amorphous content of the standard is taken into account, the accuracy of the QPA of the artificial mixture is improved. It was observed that the Brindley correction for microabsorption does not significantly improve the results. Care must be applied if grinding time is increased, since this may increase the amorphous content in the sample. Finally, the sensitivity of the RIR–Rietveld method to the addition of a small amount of zircon (∼1 wt%) has been considered, showing that accurate results can be achieved if great care is taken in the sample preparation and refinement strategy.


Sign in / Sign up

Export Citation Format

Share Document