Microreactor Synthesis of Nanosized Particles: The Role of Micromixing, Aggregation, and Separation Processes in Heterogeneous Nucleation

Author(s):  
R.Sh. Abiev ◽  
O.V. Almyasheva ◽  
V.I. Popkov ◽  
O.V. Proskurina
2013 ◽  
Vol 668 ◽  
pp. 865-869
Author(s):  
Wan Wu Ding ◽  
Wen Jun Zhao ◽  
Tian Dong Xia

The influence of different solidified velocities on the structure of pure aluminum during the process of refinement by Al-5Ti-0.6C master alloy was studied and the impact mechanism was discussed. The results show that at the same solidified velocity, with the increase of the amount of Al-5Ti-0.6C master alloy, in the solidified structure of pure aluminum, columnar crystals will gradually decrease, while equiaxed crystals will gradually increase. But in the case when the level of addition is the same, the faster the solidified velocity, the greater the number of equiaxed crystals will be in the ingot microstructure. The formation of equiaxed crystals is the result of the dual role of dissociation of crystal particles and heterogeneous nucleation of “TiC particle---Ti transition zone”.


2004 ◽  
Vol 47 (14-16) ◽  
pp. 3097-3107 ◽  
Author(s):  
Yusen Qi ◽  
James F. Klausner ◽  
Renwei Mei

2020 ◽  
Vol 62 (1) ◽  
pp. 17-23
Author(s):  
I. V. Prikhodko ◽  
G. T. Guria

Quantum dots (QDs), the fluorescent nanoparticles with multiplexing competency are applicable in broad range of fields. The application of QDs in separation processes is a relatively new approach, still presenting the spectacular advancement and wider future scope. The unique features of QDs endorse their use in wastewater treatment, chromatographic separation and heavy metal remediation. QDs also assist the separation of biomarkers, pathogens and tumor cells for biomedical applications. These tiny particles possess tremendous potential to deal with bigger global issues such as water desalination and early cancer diagnosis. To the best of our knowledge, it is the first most report summarizing the QDs uses for multiple separation processes.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuhai Wang ◽  
Hao Shen ◽  
Gu Li ◽  
Kancheng Mai

AbstractPP/nano-CaCO3 composites with different interfacial interaction were prepared by addition of compatibilizers with the same polar groups but different backbones. The non-isothermal and isothermal crystallization behavior of PP/nano- CaCO3 composites was investigated using differential scanning calorimetry (DSC). The results indicated that the interfacial interaction between PP and nano-CaCO3 increased the crystallization temperature and crystallization rate of PP due to the heterogeneous nucleation of nano-CaCO3. The interfacial interaction between nano- CaCO3 and compatibilizer further increased the crystallization temperature and crystallization rate of PP and induced the formation of β-crystal of PP due to the synergistic effect of heterogeneous nucleation between nano-CaCO3 and compatibilizer. This synergistic effect of heterogeneous nucleation between nano- CaCO3 and compatibilizer depended on the interfacial interaction between compatibilizer and PP matrix. The increased compatibility between compatibilizer and PP matrix favoured the heterogeneous nucleation between nano-CaCO3 and compatibilizer


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 136 ◽  
Author(s):  
Clodagh O’Neill ◽  
Katie Gilligan ◽  
Róisín Dwyer

Extracellular vesicles (EVs) are nanosized particles released by all cells that have been heralded as novel regulators of cell-to-cell communication. It is becoming increasingly clear that in response to a variety of stress conditions, cells employ EV-mediated intercellular communication to transmit a pro-survival message in the tumor microenvironment and beyond, supporting evasion of cell death and transmitting resistance to therapy. Understanding changes in EV cargo and secretion pattern during cell stress may uncover novel, targetable mechanisms underlying disease progression, metastasis and resistance to therapy. Further, the profile of EVs released into the circulation may provide a circulating biomarker predictive of response to therapy and indicative of microenvironmental conditions linked to disease progression, such as hypoxia. Continued progress in this exciting and rapidly expanding field of research will be dependent upon widespread adoption of transparent reporting standards and implementation of guidelines to establish a consensus on methods of EV isolation, characterisation and nomenclature employed.


Sign in / Sign up

Export Citation Format

Share Document