Enhanced Production of Nitric Oxide in A549 Cells Through Activation of TRPA1 Ion Channel by Cold Stress

CHEST Journal ◽  
2016 ◽  
Vol 149 (4) ◽  
pp. A172
Author(s):  
Wenwu Sun ◽  
Zhonghua Wang ◽  
Zhuang Ma ◽  
Haiyang Cui
Nitric Oxide ◽  
2014 ◽  
Vol 40 ◽  
pp. 31-35 ◽  
Author(s):  
Wenwu Sun ◽  
Zhonghua Wang ◽  
Jianping Cao ◽  
Xu Wang ◽  
Yaling Han ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0132991 ◽  
Author(s):  
Jibiao Fan ◽  
Ke Chen ◽  
Erick Amombo ◽  
Zhengrong Hu ◽  
Liang Chen ◽  
...  

1997 ◽  
Vol 121 (7) ◽  
pp. 1482-1488 ◽  
Author(s):  
D Neil Watkins ◽  
Michael J Garlepp ◽  
Philip J Thompson

2017 ◽  
Vol 95 (7) ◽  
pp. 803-810 ◽  
Author(s):  
Yi-Hsien Lin ◽  
Yia-Ping Liu ◽  
Yu-Chieh Lin ◽  
Po-Lei Lee ◽  
Che-Se Tung

Rapid immersion of a rat’s limbs into 4 °C water, a model of cold stress, can elicit hemodynamic perturbations (CEHP). We previously reported that CEHP is highly relevant to sympathetic activation and nitric oxide production. This study identifies the role of nitric oxide in CEHP. Conscious rats were pretreated with the nitric oxide synthase inhibitor L-NAME (NG-nitro-l-arginine methyl ester) alone or following the removal of sympathetic influences using hexamethonium or guanethidine. Rats were then subjected to a 10 min cold-stress trial. Hemodynamic indices were telemetrically monitored throughout the experiment. The analyses included measurements of systolic blood pressure; heart rate; dicrotic notch; short-term cardiovascular oscillations and coherence between blood pressure variability and heart rate variability in regions of very low frequency (0.02–0.2 Hz), low frequency (0.2–0.6 Hz), and high frequency (0.6–3.0 Hz). We observed different profiles of hemodynamic reaction between hexamethonium and guanethidine superimposed on L-NAME, suggesting an essential role for a functional adrenal medulla release of epinephrine under cold stress. These results indicate that endogenous nitric oxide plays an important role in the inhibition of sympathetic activation and cardiovascular oscillations in CEHP.


2005 ◽  
Vol 35 (2) ◽  
pp. 171-175 ◽  
Author(s):  
M. A. Gilinskii ◽  
G. M. Petrakova ◽  
T. G. Amstislavskaya ◽  
L. N. Maslova ◽  
V. V. Bulygina

Tumor Biology ◽  
2013 ◽  
Vol 35 (3) ◽  
pp. 2417-2425 ◽  
Author(s):  
Madeeha Aqil ◽  
Zane Deliu ◽  
Kim M. Elseth ◽  
Grace Shen ◽  
Jiaping Xue ◽  
...  

Author(s):  
Eui-Seong Park ◽  
Gyl-Hoon Song ◽  
Seung-Min Lee ◽  
Yong-Gyu Kim ◽  
Kun-Young Park

We investigated the efficacy of a Rumex crispus and Cordyceps sinensis mixture made using the Beopje (Korea traditional processing method to remove anti-nutrients and enhance phytochemicals) method to regulate immune cell responses toward nitric oxide (NO) production, pro-inflammatory cytokines, and inflammation related genes in mice splenocytes. The six experimental groups were as follows: control (control), Rc-Cs (Rumex crispus (Rc) and Cordyceps sinensis (Cs) mixture, 6:4), TMC (Taemyeongcheong, commercial healthy drink containing Rc-Cs), LPS (lipopolysaccharide), LPS+Rc-Cs, and LPS+TMC. The Rc-Cs mixture reduced nitric oxide (NO) production in LPS-induced splenocytes. Moreover, Rc-Cs enhanced production of the pro-inflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-6 compared to the control (no treatment). However, Rc-Cs inhibited production of pro-inflammatory cytokines in LPS-induced splenocytes. In addition, LPS+Rc-Cs also significantly suppressed mRNA expression of IL-1β and IL-6 compared to LPS treatment. Interestingly, Rc-Cs did not increase mRNA levels of iNOS and COX-2, which are inflammation related genes compared to the control, while LPS+Rc-Cs reduced mRNA levels of iNOS and COX-2 compared LPS alone (p < 0.05). TMC showed a similar pattern compared to Rc-Cs. Therefore, Rc-Cs treatment in splenocytes enhanced NO production and pro-inflammatory cytokines compared to the control, whereas Rc-Cs treatment in LPS-induced splenocytes reduced NO production, pro-inflammatory cytokines, and inflammation related genes. Thus, Rc-Cs regulated immune cells responses by increasing pro-inflammatory cytokines in splenocytes and reducing toxin (LPS)-induced inflammation. These results indicate that a Rumex crispus and Cordyceps sinensis mixture (Rc-Cs) and TMC containing Rc-Cs promote immune cells responses and anti-inflammatory activities.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Nichole Orr-Burks ◽  
Jackelyn Murray ◽  
Kyle V. Todd ◽  
Abhijeet Bakre ◽  
Ralph A. Tripp

Influenza virus causes seasonal epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses worldwide. Understanding how to regulate influenza virus replication is important for developing vaccine and therapeutic strategies. Identifying microRNAs (miRs) that affect host genes used by influenza virus for replication can support an antiviral strategy. In this study, G-protein coupled receptor (GPCR) and ion channel (IC) host genes in human alveolar epithelial (A549) cells used by influenza virus for replication (Orr-Burks et al., 2021) were examined as miR target genes following A/CA/04/09- or B/Yamagata/16/1988 replication. Thirty-three miRs were predicted to target GPCR or IC genes and their miR mimics were evaluated for their ability to decrease influenza virus replication. Paired miR inhibitors were used as an ancillary measure to confirm or not the antiviral effects of a miR mimic. Fifteen miRs lowered influenza virus replication and four miRs were found to reduce replication irrespective of virus strain and type differences. These findings provide evidence for novel miR disease intervention strategies for influenza viruses.


2019 ◽  
Vol 20 (1) ◽  
pp. 144 ◽  
Author(s):  
Muhammad Arfan ◽  
Da-Wei Zhang ◽  
Li-Juan Zou ◽  
Shi-Shuai Luo ◽  
Wen-Rong Tan ◽  
...  

Brassinosteroids (BRs) play pivotal roles in modulating plant growth, development, and stress responses. In this study, a Medicago truncatula plant pretreated with brassinolide (BL, the most active BR), enhanced cold stress tolerance by regulating the expression of several cold-related genes and antioxidant enzymes activities. Previous studies reported that hydrogen peroxide (H2O2) and nitric oxide (NO) are involved during environmental stress conditions. However, how these two signaling molecules interact with each other in BRs-induced abiotic stress tolerance remain largely unclear. BL-pretreatment induced, while brassinazole (BRZ, a specific inhibitor of BRs biosynthesis) reduced H2O2 and NO production. Further, application of dimethylthiourea (DMTU, a H2O2 and OH− scavenger) blocked BRs-induced NO production, but BRs-induced H2O2 generation was not sensitive to 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO, a scavenger of NO). Moreover, pretreatment with DMTU and PTIO decreased BL-induced mitochondrial alternative oxidase (AOX) and the photosystem capacity. However, pretreatment with PTIO was found to be more effective than DMTU in reducing BRs-induced increases in Valt, Vt, and MtAOX1 gene expression. Similarly, BRs-induced photosystem II efficiency was found in NO dependent manner than H2O2. Finally, we conclude that H2O2 was involved in NO generation, whereas NO was found to be crucial in BRs-induced AOX capacity, which further contributed to the protection of the photosystem under cold stress conditions in Medicago truncatula.


Sign in / Sign up

Export Citation Format

Share Document