The Critical Role of Autophagy in Iron-Overload Cardiomyopathy: A Model of Diastolic Heart Failure Due to Oxidative Stress

2013 ◽  
Vol 29 (10) ◽  
pp. S117-S118
Author(s):  
G Li ◽  
G de Couto ◽  
Y Chen ◽  
M Sun ◽  
Y Shi ◽  
...  
2009 ◽  
Vol 15 (6) ◽  
pp. S42-S43 ◽  
Author(s):  
Guo Hua Li ◽  
Yu Shi ◽  
Yu Chen ◽  
Mei Sun ◽  
Geoffrey de Couto ◽  
...  

2015 ◽  
Vol 36 (38) ◽  
pp. 2555-2564 ◽  
Author(s):  
Thomas Münzel ◽  
Tommaso Gori ◽  
John F. Keaney ◽  
Christoph Maack ◽  
Andreas Daiber

Author(s):  
Subhash K. Das ◽  
Vaibhav B. Patel ◽  
Ratnadeep Basu ◽  
Wang Wang ◽  
Jessica DesAulniers ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


1999 ◽  
Vol 5 (3) ◽  
pp. 79
Author(s):  
Shintaro Kinugawa ◽  
Hiroyuki Tsutsui ◽  
Tomomi Ide ◽  
Hideo Ustumi ◽  
Nobuhiro Suematsu ◽  
...  

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Sudarsan Rajan ◽  
Santhanam Shanmughapriya ◽  
Dhanendra Tomar ◽  
Zhiwei Dong ◽  
Joseph Y Cheung ◽  
...  

Mitochondrial calcium ([Ca 2+ ] m ) is essential for cardiomyocyte viability, and aberration of [Ca 2+ ] m is known to elicit multiple cardiac stress conditions associated with ATP depletion, reactive oxygen species, and mitochondrial permeability transition pore opening, all of which can lead to metabolic stress and the loss of dysfunctional mitochondria by aberrant autophagy. Elucidating the regulatory role of m itochondrial c alcium u niporter (MCU)-mediated [Ca 2+ ] m in modulating cardiac mitochondrial bioenergetics and autophagy has high significance and clinical impact for many pathophysiological processes. [Ca 2+ ] m is exquisitely controlled by the inner mitochondrial membrane uniporter, transporters, regulators and exchangers including MCU, MCUR1, EMRE, MICU1, MICU2 and LETM1. Our recently published findings revealed that Mitochondrial Ca 2+ Uniporter Regulator 1 (MCUR1) serves as a scaffold factor for uniporter complex assembly. We found that deletion of MCUR1 impaired [Ca 2+ ] m uptake, mitochondrial Ca 2+ current ( I MCU ) and mitochondrial bioenergetics and is associated with increased autophagy. Our new findings indicate that the impairment of [Ca 2+ ] m uptake exacerbated autophagy following ischemia-reperfusion (I/R) injury. In support of our mouse model, human failing hearts show that MCUR1 protein levels are markedly decreased and autophagy markers are increased, demonstrating a crucial link between [Ca 2+ ] m uptake and autophagy during heart failure. Additionally, our results reveal that either oxidation or disruption of human MCU Cys-97 (in mouse Cys-96; gain-of-function MCU C96A mutant) produces a conformational change within the N terminal β-grasp fold of MCU which promotes higher-order MCU complex assembly and increased I MCU activity and mitochondrial ROS levels. The results of our studies using a novel cardiac-specific MCUR1-KO model and a constitutively active global MCU C96A KI mouse model (CRISPR-Cas9 genome edited) elucidate the regulatory role of [Ca 2+ ] m in cardiac bioenergetics and autophagy during oxidative stress and myocardial infarction. Thus, targeting assembly and the activity of MCU complex will offer a new potential therapeutic target in the treatment of cardiomyopathy and heart failure.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sung Ryul Lee

Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1645
Author(s):  
Bart De Geest ◽  
Mudit Mishra

Under physiological circumstances, there is an exquisite balance between reactive oxygen species (ROS) production and ROS degradation, resulting in low steady-state ROS levels. ROS participate in normal cellular function and in cellular homeostasis. Oxidative stress is the state of a transient or a persistent increase of steady-state ROS levels leading to disturbed signaling pathways and oxidative modification of cellular constituents. It is a key pathophysiological player in pathological hypertrophy, pathological remodeling, and the development and progression of heart failure. The heart is the metabolically most active organ and is characterized by the highest content of mitochondria of any tissue. Mitochondria are the main source of ROS in the myocardium. The causal role of oxidative stress in heart failure is highlighted by gene transfer studies of three primary antioxidant enzymes, thioredoxin, and heme oxygenase-1, and is further supported by gene therapy studies directed at correcting oxidative stress linked to metabolic risk factors. Moreover, gene transfer studies have demonstrated that redox-sensitive microRNAs constitute potential therapeutic targets for the treatment of heart failure. In conclusion, gene therapy studies have provided strong corroborative evidence for a key role of oxidative stress in pathological remodeling and in the development of heart failure.


2020 ◽  
Vol 66 (1) ◽  
pp. 47-55
Author(s):  
Era B. Popyhova ◽  
Tatiana V. Stepanova ◽  
Dar’ya D. Lagutina ◽  
Tatiana S. Kiriiazi ◽  
Alexey N. Ivanov

The vascular endothelium performs many functions. It is a key regulator of vascular homeostasis, maintains a balance between vasodilation and vasoconstriction, inhibition and stimulation of smooth muscle cell migration and proliferation, fibrinolysis and thrombosis, and is involved to regulation of platelet adhesion and aggregation. Endothelial dysfunction (ED) plays the critical role in pathogenesis of diabetes mellitus (DM) vascular complications. The purpose of this review was to consider the mechanisms leading to the occurrence of ED in DM. The paper discusses current literature data concerning the role of hyperglycemia, oxidative stress, advanced glycation end products in endothelial alteration. A separate section is devoted to the particularities of the functioning of the antioxidant system and their significance in the development of ED in DM. The analysis of the literature allows to conclude that pathological activation of glucose utilization pathways causes damage of endothelial cells, which is accompanied by disorders of all their basic functions. Metabolic disorders in DM cause a pronounced imbalance of free radical processes and antioxidant defense, accompanied by oxidative stress of endotheliocytes, which contributes to the progression of ED and the development of vascular complications. Many aspects of multicomponent regulatory reactions in the pathogenesis of the development of ED in DM have not been sufficiently studied.


Sign in / Sign up

Export Citation Format

Share Document