23-Prenatal stress, mood, and gray matter volume in young adulthood

2018 ◽  
Vol 129 (4) ◽  
pp. e12
Author(s):  
K. Marečková ◽  
A. Klasnja ◽  
P. Bencurova ◽  
L. Andrýsková ◽  
M. Brázdil ◽  
...  

2018 ◽  
Vol 29 (3) ◽  
pp. 1244-1250 ◽  
Author(s):  
Klára Marečková ◽  
Anja Klasnja ◽  
Petra Bencurova ◽  
Lenka Andrýsková ◽  
Milan Brázdil ◽  
...  


2015 ◽  
Vol 45 (12) ◽  
pp. 2533-2543 ◽  
Author(s):  
A. Favaro ◽  
E. Tenconi ◽  
D. Degortes ◽  
R. Manara ◽  
P. Santonastaso

BackgroundPrenatal stress is hypothesized to have a disruptive impact on neurodevelopmental trajectories, but few human studies have been conducted on the long-term neural correlates of prenatal exposure to stress. The aim of this study was to explore the relationship between prenatal stress exposure and gray-matter volume and resting-state functional connectivity in a sample of 35 healthy women aged 14–40 years.MethodVoxel-based morphometry and functional connectivity analyses were performed on the whole brain and in specific regions of interest (hippocampus and amygdala). Data about prenatal/postnatal stress and obstetric complications were obtained by interviewing participants and their mothers, and reviewing obstetric records.ResultsHigher prenatal stress was associated with decreased gray-matter volume in the left medial temporal lobe (MTL) and both amygdalae, but not the hippocampus. Variance in gray-matter volume of these brain areas significantly correlated with depressive symptoms, after statistically adjusting for the effects of age, postnatal stress and obstetric complications. Prenatal stress showed a positive linear relationship with functional connectivity between the left MTL and the pregenual cortex. Moreover, connectivity between the left MTL and the left medial-orbitofrontal cortex partially explained variance in the depressive symptoms of offspring.ConclusionsIn young women, exposure to prenatal stress showed a relationship with the morphometry and functional connectivity of brain areas involved in the pathophysiology of depressive disorders. These data provide evidence in favor of the hypothesis that early exposure to stress affects brain development and identified the MTL and amygdalae as possible targets of such exposure.



2012 ◽  
Vol 43 (01) ◽  
Author(s):  
M Obermann ◽  
R Rodriguez-Raecke ◽  
S Nägel ◽  
D Holle ◽  
N Theysohn ◽  
...  




2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Malo Gaubert ◽  
Catharina Lange ◽  
Antoine Garnier-Crussard ◽  
Theresa Köbe ◽  
Salma Bougacha ◽  
...  

Abstract Background White matter hyperintensities (WMH) are frequently found in Alzheimer’s disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aβ) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aβ burden, glucose hypometabolism, and gray matter volume reduction. Methods In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aβ deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. Results There were no significant associations between global Aβ burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aβ deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. Conclusions This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yoko Shigemoto ◽  
Daichi Sone ◽  
Miho Ota ◽  
Norihide Maikusa ◽  
Masayo Ogawa ◽  
...  


2019 ◽  
Vol 15 (7) ◽  
pp. P207-P209
Author(s):  
Oriol Grau-Rivera ◽  
Grégory Operto ◽  
Carles Falcon ◽  
Raffaele Cacciaglia ◽  
Gonzalo Sánchez-Benavides ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document