Gut microbiota composition influences outcomes of skeletal muscle nutritional intervention via blended protein supplementation in posttransplant patients with hematological malignancies

2021 ◽  
Vol 40 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Guangxu Ren ◽  
Jianping Zhang ◽  
Minghua Li ◽  
Zhenchuang Tang ◽  
Zhenni Yang ◽  
...  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Honglin Yan ◽  
Bing Yu ◽  
Jeroen Degroote ◽  
Thomas Spranghers ◽  
Noémie Van Noten ◽  
...  

Abstract Background Early-life antibiotic administration is known to affect gut microbiota and host adiposity, but the effects of antibiotic exposure on skeletal muscle properties remain unknown. The present study evaluated the changes in skeletal muscle properties including myofiber characteristics and composition, as well as intramuscular fat (IMF) content in skeletal muscle of piglets when exposed to a tylosin-containing diet. Results A total of 18 piglets (28 days of age) were randomly allocated into two groups: control basal diet (Control) and Control + 100 mg tylosin phosphate/kg of feed (Antibiotic). The trial lasted for 39 days. High-throughput amplicon sequencing revealed that no significant difference in initial gut microbiota composition was existed between Control and Antibiotic groups. Antibiotic administration increased body weight and growth rate and decreased feed to gain ratio of pigs (P < 0.05). The carcass lean and fat volumes of pigs were increased by the tylosin administration (P < 0.05). Antibiotic treatment increased myofiber density and the expression of genes related to type I and type IIb myofibers in longissimus muscle (P < 0.05). The IMF content in longissimus muscle was increased by antibiotic exposure (P < 0.05). Antibiotic administration increased expression of genes related to fatty acid uptake and de novo synthesis, and decreased expression of genes related to triglyceride hydrolysis (P < 0.05). Tylosin administration affected taxonomic distribution and beta diversity of the caecal and colonic microbiota of piglets. Conclusion These results confirm that the growth performance, myofiber composition and muscle lipid metabolism are affected by antibiotic administration, which may be associated with an altered gut microbiota, suggesting that the gut microbiota could be served as a potential target for modulating skeletal muscle properties of host.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2045
Author(s):  
Barbara Strasser ◽  
Maike Wolters ◽  
Christopher Weyh ◽  
Karsten Krüger ◽  
Andrea Ticinesi

Living longer is associated with an increased risk of chronic diseases, including impairments of the musculoskeletal and immune system as well as metabolic disorders and certain cancers, each of which can negatively affect the relationship between host and microbiota up to the occurrence of dysbiosis. On the other hand, lifestyle factors, including regular physical exercise and a healthy diet, can affect skeletal muscle and immune aging positively at all ages. Accordingly, health benefits could partly depend on the effect of such interventions that influence the biodiversity and functionality of intestinal microbiota. In the present review, we first discuss the physiological effects of aging on the gut microbiota, immune system, and skeletal muscle. Secondly, we describe human epidemiological evidence about the associations between physical activity and fitness and the gut microbiota composition in older adults. The third part highlights the relevance and restorative mechanisms of immune protection through physical activity and specific exercise interventions during aging. Fourth, we present important research findings on the effects of exercise and protein as well as other nutrients on skeletal muscle performance in older adults. Finally, we provide nutritional recommendations to prevent malnutrition and support healthy active aging with a focus on gut microbiota. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low muscle mass and a higher demand for specific nutrients (e.g., dietary fiber, polyphenols and polyunsaturated fatty acids) that can modify the composition, diversity, and metabolic capacity of the gut microbiota, and may thus provide a practical means of enhancing gut and systemic immune function.


2019 ◽  
Author(s):  
Robin Mesnage ◽  
Franziska Grundler ◽  
Andreas Schwiertz ◽  
Yvon Le Maho ◽  
Fran&ccedil;oise Wilhelmi de Toledo

2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Sign in / Sign up

Export Citation Format

Share Document