Transversal line defects induced by an electric field in a period-2 oscillatory medium

2013 ◽  
Vol 18 (11) ◽  
pp. 3219-3225
Author(s):  
Jin Ming Luo ◽  
Jing Qiang ◽  
Xing-Yong Zhang ◽  
Jun Tang
Soft Matter ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 653-664 ◽  
Author(s):  
Hakam Agha ◽  
Christian Bahr

Using the interplay between anchoring, flow and electric field, structural transformations of nematic disclination lines in microfluidic channels are induced.


2004 ◽  
Vol 93 (9) ◽  
Author(s):  
Jin-Sung Park ◽  
Sung-Jae Woo ◽  
Kyoung J. Lee

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Hongyu Tian ◽  
ChongDan Ren ◽  
Benhu Zhou ◽  
Shaoyin Zhang ◽  
Weitao Lu ◽  
...  

AbstractWe theoretically investigate the valley polarization in silicene with two parallel line defects due to Rashba spin-orbit coupling (RSOC). It is found that as long as RSOC exceeds the intrinsic spin-orbit coupling (SOC), the transmission coefficients of the two valleys oscillate with the same periodicity and intensity, which consists of wide transmission peaks and zero-transmission plateaus. However, in the presence of a perpendicular electric field, the oscillation periodicity of the first valley increases, whereas that of the second valley shortens, generating the corresponding wide peak-zero plateau regions, where perfect valley polarization can be achieved. Moreover, the valley polarizability can be changed from 1 to −1 by controlling the strength of the electric field. Our findings establish a different route for generating valley-polarized current by purely electrical means and open the door for interesting applications of semiconductor valleytronics.


2019 ◽  
Vol 29 (05) ◽  
pp. 1950071
Author(s):  
Jinming Luo ◽  
Xingyong Zhang ◽  
Jun Tang

Complex-periodic spiral waves are investigated extensively in the oscillatory medium. In this paper, the linearly polarized electric field (LPEF) is employed to induce complex-periodic spiral waves in the excitable medium with abnormal dispersion. As the amplitude of LPEF is increased beyond a threshold, the simple-periodic spiral wave converts into an irregularly complex-periodic one, in which, the local dynamics exhibit several regular spikes followed by one missed spiking period. Furthermore, with the increase of the LPEF amplitude, the missed spiking period follows different numbers of regular spikes [so-called period-1 (P-1), period-2 (P-2), etc.], even a mix of different periods. Meanwhile, the wavelength of the spiral wave transits from a short to a longer one. The pure-periodic (from P-6 to P-2) spirals generally contain defect lines, across which the phase of local oscillation changes by [Formula: see text]. In contrast, there is no defect line in the mixed-periodic spiral waves. This finding indicates that the defect line is not a necessary feature for complex-periodic spiral waves. Moreover, three types of tip trajectories of pure-periodic spiral waves are identified depending on the periods. That is, the outward-petal meandering, the outward-petal meandering with slow modulation, and drifting tip motion, and the tip trajectories could be used to distinguish them from the complex-oscillatory spiral waves.


Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


Author(s):  
Kenneth R. Lawless

One of the most important applications of the electron microscope in recent years has been to the observation of defects in crystals. Replica techniques have been widely utilized for many years for the observation of surface defects, but more recently the most striking use of the electron microscope has been for the direct observation of internal defects in crystals, utilizing the transmission of electrons through thin samples.Defects in crystals may be classified basically as point defects, line defects, and planar defects, all of which play an important role in determining the physical or chemical properties of a material. Point defects are of two types, either vacancies where individual atoms are missing from lattice sites, or interstitials where an atom is situated in between normal lattice sites. The so-called point defects most commonly observed are actually aggregates of either vacancies or interstitials. Details of crystal defects of this type are considered in the special session on “Irradiation Effects in Materials” and will not be considered in detail in this session.


Author(s):  
Patrick P. Camus

The theory of field ion emission is the study of electron tunneling probability enhanced by the application of a high electric field. At subnanometer distances and kilovolt potentials, the probability of tunneling of electrons increases markedly. Field ionization of gas atoms produce atomic resolution images of the surface of the specimen, while field evaporation of surface atoms sections the specimen. Details of emission theory may be found in monographs.Field ionization (FI) is the phenomena whereby an electric field assists in the ionization of gas atoms via tunneling. The tunneling probability is a maximum at a critical distance above the surface,xc, Fig. 1. Energy is required to ionize the gas atom at xc, I, but at a value reduced by the appliedelectric field, xcFe, while energy is recovered by placing the electron in the specimen, φ. The highest ionization probability occurs for those regions on the specimen that have the highest local electric field. Those atoms which protrude from the average surfacehave the smallest radius of curvature, the highest field and therefore produce the highest ionizationprobability and brightest spots on the imaging screen, Fig. 2. This technique is called field ion microscopy (FIM).


1993 ◽  
Vol 3 (8) ◽  
pp. 1201-1225 ◽  
Author(s):  
G. N�ron de Surgy ◽  
J.-P. Chabrerie ◽  
O. Denoux ◽  
J.-E. Wesfreid

Sign in / Sign up

Export Citation Format

Share Document