Increase in linear attenuation coefficient by changing crystal structure of materials for radiation shielding and biomedical devices safety

Author(s):  
Elijah Halliwell ◽  
Caitlynn Couch ◽  
Rahima Begum ◽  
Wei Li ◽  
Muhammad Maqbool
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Md. Bengir Ahmed Shuvho ◽  
Md Azizul Islam ◽  
Muhammad Borhan Uddin ◽  
Ruhul Amin Khan

Abstract Radiation shielding is an indispensable ingredient in the design of an integrated system to attenuate the effects of radiation during various operations such as space, aircraft, and nuclear plant. Discerning and exploiting the properties of composite materials compatible for radiation shielding in those applications are therefore primary obligation. In this study, we present here the results of control, ilmenite-, and garnet-based composites radiation shielding capabilities. The gamma radiation shielding competency of control, ilmenite-, and garnet-based composite materials has been examined by using linear attenuation coefficient, mass attenuation coefficient (MAC), tenth value layer (TVL), and half value layer (HVL). A comparison among those composite materials has been studied to find out the best one for radiation shielding material. Factors influencing the radiation shielding capabilities such as mechanical properties, thermal properties, density, surface morphology, and Fourier-transform infrared spectroscopy (FTIR) analysis have been studied in comparative investigations. In this work, we show that garnet-based composite material has viable radiation shielding performances as compared to the control and ilmenite-based composites. Garnet-based composite exhibits lower impact energy to withstand against gamma radiation as compared to the other tested shielding materials.


2014 ◽  
Vol 679 ◽  
pp. 39-44 ◽  
Author(s):  
Ali Basheer Azeez ◽  
Kahtan S. Mohammed ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Andrei Victor Sandhu ◽  
Azmi Rahmat ◽  
...  

Lead metal proved to be toxic. Its lethal effect became eminent. Many developed countries have banned lead usage in various applications. Seeking alternative material to replace lead is a crucial goal. As density concerns, tungsten-brass composite is a good candidate for lead replacement. In this study the radiation shielding effects of tungsten-brass composites were evaluated. To attain this goal, four tungsten-brass sets were prepared. The tungsten (W) wt. % in these specimens was ranged from 50 to 80, the balance is brass. The specimens were sintered at 10500C in alumina tube furnace under protective environment. To evaluate the radiation shielding performance of these specimens, two gamma ray sources, 137Cs and 60Co were utilized. The photon energy levels for these sources were of o.662MeV and 1.25MeV respectively. The measurements were performed using gamma spectrometer contains NaI (Tl) detector. The anti-radiation performance of the tungsten-brass was correlated to that of lead under similar conditions. Vickers micro hardness, relative sintered density, micro structural characterisation and linear attenuation coefficient (μ) were carried out. Samples with the highest Weight percentage of W has the highest hardness value while the one with the lowest Weight percentage of W. The linear attenuation coefficients of the specimens were significantly improved by increasing the W wt. % of the specimen. The linear attenuation coefficients of the tested specimens ranged from 0.85±0.010cm-1 to 1.12±0.049cm-1for 60Co and0.73±0.012 cm-1 to 0.97±0.027 cm-1 for 137Cs. This result indicates that W-brass composites are suitable material for lead replacement as a shielding barrier.Keywords: Attenuation coefficient, radiation shielding, lead, tungsten-brass composites, NaI (Tl).


2013 ◽  
Vol 594-595 ◽  
pp. 1015-1019
Author(s):  
Ali Basheer Azeez ◽  
Kahtan S. Mohammed ◽  
Abdullah Mohd Mustafa Al Bakri ◽  
Hana Ihsan Hasan

Samples of concrete incorporate different waste materials such as iron filings, iron balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised Cs137and Co60radioactive elements with photon energies of o.662 MeV for Cs137and two1.17 and 1.33 MeV energy levels for the Co60. Likewise the mean free paths for the tested samples were obtained. The maximum linear attenuation coefficient values of 0.92±1.12×10-3for CS137and 1.12±1.57×10-3for CO60attained, in this study were for concrete incorporate iron filling wastes of 30 wt. %. The iron balls and the steel slags gave much inferior values. The concrete incorporates iron filings provided the best shielding effect. The microstructure, concretefillings composite density, the homogeneity and particulate distribution were examined and evaluated using different metallographic, microscopic and measurement facilities.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5061
Author(s):  
Dalal Abdullah Aloraini ◽  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed ◽  
Hanan Al-Ghamdi ◽  
Ashok Kumar ◽  
...  

The gamma-ray shielding features of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems were experimentally reported. The mass attenuation coefficient (MAC) for the fabricated glasses was experimentally measured at seven energy values (between 0.0595 and 1.33 MeV). The compatibility between the practical and theoretical results shows the accuracy of the results obtained in the laboratory for determining the MAC of the prepared samples. The mass and linear attenuation coefficients (MACs) increase with the addition of Bi2O3 and A4 glass possesses the highest MAC and LAC. A downward trend in the linear attenuation coefficient (LAC) with increasing the energy from 0.0595 to 1.33 MeV is found. The highest LAC is found at 1.33 MeV (in the range of 0.092–0.143 cm−1). The effective atomic number (Zeff) follows the order B1 > A1 > A2 > A3 > A4. This order emphasizes that increasing the content of Bi2O3 has a positive effect on the photon shielding proficiencies owing to the higher density of Bi2O3 compared with Na2O. The half value layer (HVL) is also determined and the HVL for the tested glasses is computed between 0.106 and 0.958 cm at 0.0595 MeV. The glass with 10 mol% of Bi2O3 has lower HVL than the glasses with 0, 2.5, 5, and 7.5 mol% of Bi2O3. So, the A4 glass needs a smaller thickness than the other glasses to shield the same radiation. As a result of the reported shielding parameters, inserting B2O3 provides lower values of these three parameters, which in turn leads to the development of superior photons shields.


2018 ◽  
Vol 765 ◽  
pp. 329-334 ◽  
Author(s):  
Pranpriya Phutthanet ◽  
Pithiwat Tiantong ◽  
Phongthorn Julphunthong ◽  
Panuwat Joyklad ◽  
Li Jie Wang ◽  
...  

This study aims to evaluate gamma-ray shielding characteristics of concrete produced from blast furnace slag. The chemical and physical properties of the aggregates including the chemical composition and specific gravity were investigated to evaluate their radiation shielding properties. The samples were prepared with a cement content of 400 kg/m3, a water to cement ratio of 0.4, and fine aggregate of 43% and coarse aggregate ratio of 57%. Blast furnace slag was replaced with sand at 25%, 50%, 75% and 100% by volume to improve the shielding properties. The compressive strengths at 3, 7 and 28 days and the unit weight of the prepared samples were determined. The linear attenuation coefficient was measured and calculated at photon energies of 0.662 MeV, 1.17 MeV and 1.33 MeV. The WinXCom program was employed to calculate the attenuation coefficient from the chemical composition of samples and the results were compared to the measured results. The study results suggest that the use of blast furnace slag is effectively in improving the compressive strength and shielding properties of concrete. The increase of blast furnace slag caused an increase in the linear attenuation from 0.190 cm-1 to 0.210 cm-1 at 0.662 MeV.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4776 ◽  
Author(s):  
Hanan Al-Ghamdi ◽  
Mengge Dong ◽  
M. I. Sayyed ◽  
Chao Wang ◽  
Aljawhara H. Almuqrin ◽  
...  

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sayed A. Waly ◽  
Ahmed M. Abdelreheem ◽  
Mohamed M. Shehata ◽  
Omayma A. Ghazy ◽  
Zakaria I. Ali

Abstract Radiation shielding composites based on polyvinyl chloride (PVC) reinforced with different weight ratios of Pb(NO3)2 (5, 10, and 20 wt%) were prepared using the solution-casting technique. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy, and tensile testing method were used to characterize the PVC composite films. FTIR and XRD investigations illustrate the structural change and modification of the as-prepared PVC composites. The morphological analysis of the composite revealed that Pb(NO3)2 was dispersed uniformly within PVC polymer matrix. TGA revealed that the incorporation of Pb(NO3)2 improved the thermal stability of the investigated composites, whereas adding Pb(NO3)2 to the polymer matrix worsened its tensile properties. The as-prepared composite films were investigated for radiation-shielding of gamma-rays radioactive point sources (241Am, 133Ba, 137Cs, and 60Co). Linear attenuation coefficient (μ, cm−1), mass attenuation coefficient (μ/ρ, cm2/g), and half-value layer (HVL, cm) have been estimated from the obtained data using the MicroShield program. Reasonable agreement was attended between theoretical and experimental results. The deviation between the experiment and theoretical values of mass attenuation coefficient is being to be lower than 9%, and this can be correlated to the good distribution of Pb(NO3)2. The results revealed that adding Pb(NO3)2 to PVC polymer composites improved their mass attenuation coefficient.


2014 ◽  
Vol 4 (4) ◽  
pp. 150-157
Author(s):  
E. Rajasekhar ◽  
R. Jeevan Kumar ◽  
K. Venkataramaniah ◽  
K. L. Narasimham

Wood is a complex biomaterial useful for various applications. Wood can also be used to shield radiation from nuclear sources. In the present study, the radiation effects on various wood materials of medicinal plants collected from Nallamala forest in Andhra Pradesh, India was investigated. Gamma radiation shielding characteristics such as linear attenuation coefficient, mass attenuation coefficient, half- value thickness and relaxation length of ten different types of wood materials were measured for gamma energies 511, 662, 1173, 1275 and 1332 keV from 22Na, 137Cs and 60Co radioactive sources . Measurements were performed using a gamma spectrometer consisting of NaI (Tl) scintillation detector coupled to an 8K PC based Nuclear MCA with a good geometry set up. Classification of wood and their medicinal uses also studied. Analysis of results showed an appreciable evidence of radiation attenuation, attenuation coefficient decreasing with increase of gamma en-ergy and significant variation for different species.


2020 ◽  
Vol 15 (11) ◽  
pp. 1374-1380
Author(s):  
H. Almohiy ◽  
M. Saad ◽  
Y. M. AbouDeif ◽  
Iwona Grelowska ◽  
M. Reben ◽  
...  

This research reported on the radiation safety characteristics of doped fluorophosphate glasses with heavy rare earth lanthanide (Sm2O3) in the composition 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/30000 ppm Sm2O3 and 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/40000 ppm Sm2O3 in mol%. The parameters for shielding like that mass attenuation coefficient, MAC, linear attenuation coefficient, LAC, tenth value layers, TVL, half-value layers, HVL, effective atomic number, (Zeff), mean free path, MFP, electron density, Neff, electronic cross-sections, ECS, and total atomic cross-sections, ACS, were calculated between 0.015 and 15 MB of preparation glasses. The protection parameters of the current glasses are good in comparison to industrial materials used for nuclear shieldings, such as glass RS 253, ordinary concrete (OC), hematite serpenite (HS), or basalt magnet (BM). From the above mention results, the prepared glasses can be used as radiation safety materials.


2019 ◽  
Vol 21 (2) ◽  
pp. 108-114
Author(s):  
Abdus Sattar Mollah

Gamma-ray radiation shielding properties such as linear attenuation coefficient (m), mass attenuation coefficient (m/r), half- value thickness (HVT), tenth value thickness (TVL) and mean free path (MFP) were calculated for different types of radiation absorbing materials such as Concrete, Aluminum, Iron, Copper, Lead, Lead-glass and Tungsten. These materials are being widely used as radiation shielding materials in different areas of nuclear medicine facilities for different purposes. The XCOM and in-house developed computer program were used to calculate the above mentioned parameters for gamma-ray energies of 100 keV, 200 keV and 511 keV. The gamma-ray energy range used in nuclear medicine is between 100 keV and 511 keV. Results show that attenuation coefficient decreases with increase of gamma-ray energy, and attenuation coefficient increases with increase of density and shows significant variation for different materials. Linear attenuation coefficient depends on the energy of incident gamma-rays and the nature of the absorbing materials. These gamma-ray attenuation parameters of different absorbing materials can be used for proper shielding design of syringe shield, isotope storage container, isotope transport container, personnel protective shield barrier, radioactive waste storage facility etc.  in nuclear medicine services. Bangladesh J. Nuclear Med. 21(2): 108-114, July 2018  


Sign in / Sign up

Export Citation Format

Share Document