scholarly journals Experimental Investigation of Radiation Shielding Competence of Bi2O3-CaO-K2O-Na2O-P2O5 Glass Systems

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5061
Author(s):  
Dalal Abdullah Aloraini ◽  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed ◽  
Hanan Al-Ghamdi ◽  
Ashok Kumar ◽  
...  

The gamma-ray shielding features of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems were experimentally reported. The mass attenuation coefficient (MAC) for the fabricated glasses was experimentally measured at seven energy values (between 0.0595 and 1.33 MeV). The compatibility between the practical and theoretical results shows the accuracy of the results obtained in the laboratory for determining the MAC of the prepared samples. The mass and linear attenuation coefficients (MACs) increase with the addition of Bi2O3 and A4 glass possesses the highest MAC and LAC. A downward trend in the linear attenuation coefficient (LAC) with increasing the energy from 0.0595 to 1.33 MeV is found. The highest LAC is found at 1.33 MeV (in the range of 0.092–0.143 cm−1). The effective atomic number (Zeff) follows the order B1 > A1 > A2 > A3 > A4. This order emphasizes that increasing the content of Bi2O3 has a positive effect on the photon shielding proficiencies owing to the higher density of Bi2O3 compared with Na2O. The half value layer (HVL) is also determined and the HVL for the tested glasses is computed between 0.106 and 0.958 cm at 0.0595 MeV. The glass with 10 mol% of Bi2O3 has lower HVL than the glasses with 0, 2.5, 5, and 7.5 mol% of Bi2O3. So, the A4 glass needs a smaller thickness than the other glasses to shield the same radiation. As a result of the reported shielding parameters, inserting B2O3 provides lower values of these three parameters, which in turn leads to the development of superior photons shields.

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4776 ◽  
Author(s):  
Hanan Al-Ghamdi ◽  
Mengge Dong ◽  
M. I. Sayyed ◽  
Chao Wang ◽  
Aljawhara H. Almuqrin ◽  
...  

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.


2021 ◽  
Author(s):  
Kh. S. Shaaban

Abstract Quaternary glasses with a 59B2O3-29SiO2-2LiF-(\(10-x\)) ZnO-\(x\)TiO2 composition using the melt-quench techniques were prepared. XRD examined the nature of prepared glasses. The FT-IR spectra was studied for the changes in the structure of these glasses. While the density is increased, the molar volume of the glass system is reduced. The velocities and elastic modulus of these glasses were experimentally and theoretically based on the Makishima-Mackenzie model evaluated. Besides, for the studied glasses, the radiation shielding efficiency was investigated by Phy-X/PSD and XCOM software. These glasses were found to have an abnormal attenuation, structural, and density relationship. The mass attenuation coefficient (µ/ρ), linear attenuation coefficient (LAC), half-value layer (HVL), tenth value layer (TVL), and effective atomic number (Zeff), of glasses, have been designed to simulate for gamma photon energies between 0.015 and 15 MeV. MAC values calculated using Phy-X/PSD and XCOM were compared and was observed in good agreement with the other.


2014 ◽  
Vol 679 ◽  
pp. 39-44 ◽  
Author(s):  
Ali Basheer Azeez ◽  
Kahtan S. Mohammed ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Andrei Victor Sandhu ◽  
Azmi Rahmat ◽  
...  

Lead metal proved to be toxic. Its lethal effect became eminent. Many developed countries have banned lead usage in various applications. Seeking alternative material to replace lead is a crucial goal. As density concerns, tungsten-brass composite is a good candidate for lead replacement. In this study the radiation shielding effects of tungsten-brass composites were evaluated. To attain this goal, four tungsten-brass sets were prepared. The tungsten (W) wt. % in these specimens was ranged from 50 to 80, the balance is brass. The specimens were sintered at 10500C in alumina tube furnace under protective environment. To evaluate the radiation shielding performance of these specimens, two gamma ray sources, 137Cs and 60Co were utilized. The photon energy levels for these sources were of o.662MeV and 1.25MeV respectively. The measurements were performed using gamma spectrometer contains NaI (Tl) detector. The anti-radiation performance of the tungsten-brass was correlated to that of lead under similar conditions. Vickers micro hardness, relative sintered density, micro structural characterisation and linear attenuation coefficient (μ) were carried out. Samples with the highest Weight percentage of W has the highest hardness value while the one with the lowest Weight percentage of W. The linear attenuation coefficients of the specimens were significantly improved by increasing the W wt. % of the specimen. The linear attenuation coefficients of the tested specimens ranged from 0.85±0.010cm-1 to 1.12±0.049cm-1for 60Co and0.73±0.012 cm-1 to 0.97±0.027 cm-1 for 137Cs. This result indicates that W-brass composites are suitable material for lead replacement as a shielding barrier.Keywords: Attenuation coefficient, radiation shielding, lead, tungsten-brass composites, NaI (Tl).


2020 ◽  
Vol 15 (11) ◽  
pp. 1374-1380
Author(s):  
H. Almohiy ◽  
M. Saad ◽  
Y. M. AbouDeif ◽  
Iwona Grelowska ◽  
M. Reben ◽  
...  

This research reported on the radiation safety characteristics of doped fluorophosphate glasses with heavy rare earth lanthanide (Sm2O3) in the composition 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/30000 ppm Sm2O3 and 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/40000 ppm Sm2O3 in mol%. The parameters for shielding like that mass attenuation coefficient, MAC, linear attenuation coefficient, LAC, tenth value layers, TVL, half-value layers, HVL, effective atomic number, (Zeff), mean free path, MFP, electron density, Neff, electronic cross-sections, ECS, and total atomic cross-sections, ACS, were calculated between 0.015 and 15 MB of preparation glasses. The protection parameters of the current glasses are good in comparison to industrial materials used for nuclear shieldings, such as glass RS 253, ordinary concrete (OC), hematite serpenite (HS), or basalt magnet (BM). From the above mention results, the prepared glasses can be used as radiation safety materials.


2019 ◽  
Vol 21 (2) ◽  
pp. 108-114
Author(s):  
Abdus Sattar Mollah

Gamma-ray radiation shielding properties such as linear attenuation coefficient (m), mass attenuation coefficient (m/r), half- value thickness (HVT), tenth value thickness (TVL) and mean free path (MFP) were calculated for different types of radiation absorbing materials such as Concrete, Aluminum, Iron, Copper, Lead, Lead-glass and Tungsten. These materials are being widely used as radiation shielding materials in different areas of nuclear medicine facilities for different purposes. The XCOM and in-house developed computer program were used to calculate the above mentioned parameters for gamma-ray energies of 100 keV, 200 keV and 511 keV. The gamma-ray energy range used in nuclear medicine is between 100 keV and 511 keV. Results show that attenuation coefficient decreases with increase of gamma-ray energy, and attenuation coefficient increases with increase of density and shows significant variation for different materials. Linear attenuation coefficient depends on the energy of incident gamma-rays and the nature of the absorbing materials. These gamma-ray attenuation parameters of different absorbing materials can be used for proper shielding design of syringe shield, isotope storage container, isotope transport container, personnel protective shield barrier, radioactive waste storage facility etc.  in nuclear medicine services. Bangladesh J. Nuclear Med. 21(2): 108-114, July 2018  


2020 ◽  
pp. 60-65
Author(s):  
Hiwa Mohammad Qadr

The purpose of this study was to determine the linear attenuation coefficient, the mass attenuation coefficient, Half Value Layer. Tenth Value Layer and Mean Free Path for four different shielding materials such as aluminium, iron, zirconium and tungsten. By using the gamma-radiation energies emitted from 152Eu, 22Na, 137Cs, and 60Co radioactive sources. For this purpose, the attenuation measurements were performed using NaI(TI) detector. Calculated values of all parameters of the all shielding materials were compared with each other. The results of all presented parameters show that, tungsten has the best radiation shielding compared to other shielding materials. Then, the obtained parameters were compared with the theoretical values.


2019 ◽  
Vol 34 (4) ◽  
pp. 342-352 ◽  
Author(s):  
Zainab Alsayed ◽  
Mohamed Badawi ◽  
Ramadan Awad ◽  
Abouzeid Thabet ◽  
Ahmed El-Khatib

The extensive utilization of radiation is rapidly developing worldwide involving abundant fields like medical, industrial, research, and nuclear facilities. This makes the need for studying radiation shielding materials and their properties more urgent than ever. In the present study, bulk and nano ZnO were mixed by the same ratio each time (10, 20, 30, and 40 wt.%), with high-density polyethylene as a polymer matrix and characterized by X-ray diffraction. The results confirmed the good dispersion of bulk and nano ZnO particles within the polymer matrix. The prepared composite samples were used in different thicknesses as gamma ray shielding materials, and the heaviness was calculated and compared to lead. Using HPGe detector at specific energies (59.53, 356.01, 661.66, 1173.33, and 1332.50 keV) for different radioactive point sources (241Am, 133Ba, 137Cs, and 60Co), the mass attenuation coefficient for the samples was measured experimentally. Depending upon the obtained values, the linear attenuation coefficient, half-value layer, tenth value layer, heaviness and relaxation length were estimated. Using the XCOM database, the values of linear attenuation coefficient, mass attenuation coefficient, and other parameters were calculated theoretically for the bulk ZnO blended with high-density polyethylene. The obtained results were compared to the experimental values for nano and bulk ZnO blended with high density polyethylene. The radiation shielding behavior of nano ZnO blended with high density polyethylene was found to be more promising and efficient for radiation protection against gamma ray.


2018 ◽  
Vol 106 (12) ◽  
pp. 1009-1016 ◽  
Author(s):  
Osman Agar

Abstract Gamma ray attenuation coefficients for various concrete types containing natural sepiolite mineral and B4C have been experimentally investigated at different gamma energies. In order to obtain the gamma rays, the four radioactive point-isotropic sources 133Ba, 137Cs, 60Co and 22Na which energies ranged from 80.9 to 1332.5 keV have been utilized. The measurements have been carried out by using HPGe detector and MCA equipped with a personal computer. The morphological structure and elemental compositions of the concretes have been measured with scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) analyses. Linear attenuation coefficient (μ), mass attenuation coefficient (μm), half value layer (HVL) and mean free path (MFP) have been calculated for all concretes. The obtained results have been compared to the other materials such as Pb and Al.


2021 ◽  
Vol 19 (11) ◽  
pp. 15-21
Author(s):  
Ali Adil Turki Aldalawi ◽  
Mohammed Yahya Hadi ◽  
Rawaa A. Hameed

The effective atomic number (Z effective), total atomic cross-section (б Total) electron density (N effective) have been Measured depending on the mass attenuation coefficient (μ/ρ). By using Gamma-ray radiation (γ), emitted from sources (57𝐶𝑜, 133𝐵𝑎, 22𝑁𝑎, 137𝐶𝑠, 54𝑀𝑛, 𝑎𝑛𝑑 60𝐶𝑜) with energies from (0.122, 0.356, 0.511, 0.662, 0.84, 1.17, 1.275 𝑎𝑛𝑑 1.33𝑀𝑒𝑉) respectively. using the Sodium Iodide Scintillation Detectors NaI (Tl) at 662 keV and resolution about 8.2% have been measured the mass attenuation coefficients for the sample “Nonanoic acid its common name Pelargonic acid” it’s chemical formula C9H18O2. The data from the mass attenuation coefficient were then employed to study Zeffective, Neffective, and бtotal of the sample. In the presence of gamma-ray energy, it was discovered that the effective atomic number and effective electron densities first drop and they tend to remain nearly constant. The experimental values obtained by Zeffective and Neffective were in excellent agreement with the theoretical values. The theoretical data that is accessible is obtained from XCom, which is available online. The study's findings aid in understanding how (μ/ρ) values change when Zeff and Neff values vary in the case of H, C, and O based biological molecules such as fatty acids.


2020 ◽  
Vol 11 (1) ◽  
pp. 326
Author(s):  
M.I. Sayyed ◽  
K.A. Mahmoud ◽  
O.L. Tashlykov ◽  
Mayeen Uddin Khandaker ◽  
M.R.I. Faruque

Elastic moduli were theoretically computed using the Makishima–Mackenzie model for SiO2–Na2O–CaO glasses doped with Sb2O3 contents. The calculated elastic moduli (Young’s, bulk, shear, and longitudinal modulus) were observed to increase with an increase in the Sb2O3 contents. The microhardness showed an increase, while Poisson’s ratio decreased with the rise of the Sb2O3 contents. In addition, gamma-ray and neutron shielding parameters were evaluated for the investigated glasses. The linear attenuation coefficient (LAC) was simulated using the Monte Carlo N-particle transport code (MCNP-5). Other parameters, such as the mass attenuation coefficient (MAC), transmission factor (TF), and half-value layer, were calculated based on the simulated LAC. The addition of Sb2O3 content was observed to enhance the investigated glasses’ shielding parameters, where the highest LAC was achieved for the SCNSb10 glass with 10 mol% Sb2O3 and decreased from 0.441 to 0.154 cm−1 at gamma energies between 0.248 and 1.406 MeV. Furthermore, the fast neutron effective removal cross-section (∑R) was computed theoretically. The calculated results showed that the highest ∑R was equal to 0.0341 cm2g−1 and was obtained for the SCNSb0 glass, which had no Sb2O3 content, while the lowest ∑R was equal to 0.0286 cm2 g−1 for the SCNSb10 glass sample. The present work was carried out to examine the advantages of the soda–lime glasses with different Sb2O3 contents in several photon shielding applications, especially for radiation safety in nuclear installations.


Sign in / Sign up

Export Citation Format

Share Document