Investigation and Characterization of Gamma Radiation Shielding Capacity of Heavy Minerals-Based Composite Materials

Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Md. Bengir Ahmed Shuvho ◽  
Md Azizul Islam ◽  
Muhammad Borhan Uddin ◽  
Ruhul Amin Khan

Abstract Radiation shielding is an indispensable ingredient in the design of an integrated system to attenuate the effects of radiation during various operations such as space, aircraft, and nuclear plant. Discerning and exploiting the properties of composite materials compatible for radiation shielding in those applications are therefore primary obligation. In this study, we present here the results of control, ilmenite-, and garnet-based composites radiation shielding capabilities. The gamma radiation shielding competency of control, ilmenite-, and garnet-based composite materials has been examined by using linear attenuation coefficient, mass attenuation coefficient (MAC), tenth value layer (TVL), and half value layer (HVL). A comparison among those composite materials has been studied to find out the best one for radiation shielding material. Factors influencing the radiation shielding capabilities such as mechanical properties, thermal properties, density, surface morphology, and Fourier-transform infrared spectroscopy (FTIR) analysis have been studied in comparative investigations. In this work, we show that garnet-based composite material has viable radiation shielding performances as compared to the control and ilmenite-based composites. Garnet-based composite exhibits lower impact energy to withstand against gamma radiation as compared to the other tested shielding materials.

2014 ◽  
Vol 4 (4) ◽  
pp. 150-157
Author(s):  
E. Rajasekhar ◽  
R. Jeevan Kumar ◽  
K. Venkataramaniah ◽  
K. L. Narasimham

Wood is a complex biomaterial useful for various applications. Wood can also be used to shield radiation from nuclear sources. In the present study, the radiation effects on various wood materials of medicinal plants collected from Nallamala forest in Andhra Pradesh, India was investigated. Gamma radiation shielding characteristics such as linear attenuation coefficient, mass attenuation coefficient, half- value thickness and relaxation length of ten different types of wood materials were measured for gamma energies 511, 662, 1173, 1275 and 1332 keV from 22Na, 137Cs and 60Co radioactive sources . Measurements were performed using a gamma spectrometer consisting of NaI (Tl) scintillation detector coupled to an 8K PC based Nuclear MCA with a good geometry set up. Classification of wood and their medicinal uses also studied. Analysis of results showed an appreciable evidence of radiation attenuation, attenuation coefficient decreasing with increase of gamma en-ergy and significant variation for different species.


2020 ◽  
pp. 60-65
Author(s):  
Hiwa Mohammad Qadr

The purpose of this study was to determine the linear attenuation coefficient, the mass attenuation coefficient, Half Value Layer. Tenth Value Layer and Mean Free Path for four different shielding materials such as aluminium, iron, zirconium and tungsten. By using the gamma-radiation energies emitted from 152Eu, 22Na, 137Cs, and 60Co radioactive sources. For this purpose, the attenuation measurements were performed using NaI(TI) detector. Calculated values of all parameters of the all shielding materials were compared with each other. The results of all presented parameters show that, tungsten has the best radiation shielding compared to other shielding materials. Then, the obtained parameters were compared with the theoretical values.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kanwaldeep Singh ◽  
Sukhpal Singh ◽  
Gurmel Singh

Six concrete mixtures were prepared with 0%, 20%, 30%, 40%, 50%, and 60% of flyash replacing the cement content and having constant water to cement ratio. The testing specimens were casted and their mechanical parameters were tested experimentally in accordance with the Indian standards. Results of mechanical parameters show their improvement with age of the specimens and results of radiation parameters show no significant effect of flyash substitution on mass attenuation coefficient.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5061
Author(s):  
Dalal Abdullah Aloraini ◽  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed ◽  
Hanan Al-Ghamdi ◽  
Ashok Kumar ◽  
...  

The gamma-ray shielding features of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems were experimentally reported. The mass attenuation coefficient (MAC) for the fabricated glasses was experimentally measured at seven energy values (between 0.0595 and 1.33 MeV). The compatibility between the practical and theoretical results shows the accuracy of the results obtained in the laboratory for determining the MAC of the prepared samples. The mass and linear attenuation coefficients (MACs) increase with the addition of Bi2O3 and A4 glass possesses the highest MAC and LAC. A downward trend in the linear attenuation coefficient (LAC) with increasing the energy from 0.0595 to 1.33 MeV is found. The highest LAC is found at 1.33 MeV (in the range of 0.092–0.143 cm−1). The effective atomic number (Zeff) follows the order B1 > A1 > A2 > A3 > A4. This order emphasizes that increasing the content of Bi2O3 has a positive effect on the photon shielding proficiencies owing to the higher density of Bi2O3 compared with Na2O. The half value layer (HVL) is also determined and the HVL for the tested glasses is computed between 0.106 and 0.958 cm at 0.0595 MeV. The glass with 10 mol% of Bi2O3 has lower HVL than the glasses with 0, 2.5, 5, and 7.5 mol% of Bi2O3. So, the A4 glass needs a smaller thickness than the other glasses to shield the same radiation. As a result of the reported shielding parameters, inserting B2O3 provides lower values of these three parameters, which in turn leads to the development of superior photons shields.


2019 ◽  
Vol 107 (6) ◽  
pp. 517-522 ◽  
Author(s):  
M. Almatari

Abstract Radiations are widely used in hospitals and health services in radiotherapy and molecular imaging using x-ray and gamma radiation which considered as the most penetrating radiations and very difficult to shield. In this study, the radiation shielding properties of different zinc oxide (ZnO) concentrations of the (95-x)TeO2-5TiO2-xZnO (x=5, 10, 15, 20, 25, 30 and 40 mol%) glass system was investigated to be introduced as a new transparency effective shielding material. In order to study shielding properties, mass attenuation coefficients in the energy range of 0.015–15 MeV photon energies for the current glass system were calculated using ParShield software. Moreover, half value layer, mean free path and effective atomic number were evaluated using the obtained attenuation coefficient. The results indicated that if ZnO was added to the current glass system the mass attenuation coefficient will be decreased as well as effective atomic number values. The highest mass attenuation coefficient at all energies was found to be in TT5Z5 glass sample as well as the effective atomic number value.


2019 ◽  
Vol 4 (3) ◽  
pp. 15-20
Author(s):  
M. M. Haque ◽  
M. Shamsuzzaman ◽  
Muhammad Borhan Uddin ◽  
Abu Zafor Mohammad Salahuddin ◽  
Ruhul A. Khan

Heavy mineral and unsaturated polyester resin (UPR) based composite blocks were prepared for potential shielding of ionizing radiations. Locally available heavy minerals with Ilmenite, Magnetite, Garnet, Rutile, Zirconium contents were used to fabricate the composite blocks for the gamma photons with energies 0.662 MeV - 1.25 MeV. The shielding capacity was evaluated in terms of Half Value Layer (HVL), Tenth Value Layer (TVL), Sixteenth Value Layer (SVL), Linear attenuation coefficient, Mass attenuation coefficient, and reduced % of radiation intensity. The Ilmenite composite exhibits relatively good attenuation performance in the case of 0.662 MeV photons of Cs-137. On the other hand, Zirconium composite demonstrates relatively good attenuation capacity in the case of 1.25 MeV photons of Co-60 in comparison to the ordinary concrete block. The goal of this work is to explore some novel materials to be effectively used as gamma shielding options in radiation facilities at minimal cost.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4776 ◽  
Author(s):  
Hanan Al-Ghamdi ◽  
Mengge Dong ◽  
M. I. Sayyed ◽  
Chao Wang ◽  
Aljawhara H. Almuqrin ◽  
...  

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sayed A. Waly ◽  
Ahmed M. Abdelreheem ◽  
Mohamed M. Shehata ◽  
Omayma A. Ghazy ◽  
Zakaria I. Ali

Abstract Radiation shielding composites based on polyvinyl chloride (PVC) reinforced with different weight ratios of Pb(NO3)2 (5, 10, and 20 wt%) were prepared using the solution-casting technique. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy, and tensile testing method were used to characterize the PVC composite films. FTIR and XRD investigations illustrate the structural change and modification of the as-prepared PVC composites. The morphological analysis of the composite revealed that Pb(NO3)2 was dispersed uniformly within PVC polymer matrix. TGA revealed that the incorporation of Pb(NO3)2 improved the thermal stability of the investigated composites, whereas adding Pb(NO3)2 to the polymer matrix worsened its tensile properties. The as-prepared composite films were investigated for radiation-shielding of gamma-rays radioactive point sources (241Am, 133Ba, 137Cs, and 60Co). Linear attenuation coefficient (μ, cm−1), mass attenuation coefficient (μ/ρ, cm2/g), and half-value layer (HVL, cm) have been estimated from the obtained data using the MicroShield program. Reasonable agreement was attended between theoretical and experimental results. The deviation between the experiment and theoretical values of mass attenuation coefficient is being to be lower than 9%, and this can be correlated to the good distribution of Pb(NO3)2. The results revealed that adding Pb(NO3)2 to PVC polymer composites improved their mass attenuation coefficient.


2020 ◽  
Vol 15 (11) ◽  
pp. 1374-1380
Author(s):  
H. Almohiy ◽  
M. Saad ◽  
Y. M. AbouDeif ◽  
Iwona Grelowska ◽  
M. Reben ◽  
...  

This research reported on the radiation safety characteristics of doped fluorophosphate glasses with heavy rare earth lanthanide (Sm2O3) in the composition 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/30000 ppm Sm2O3 and 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/40000 ppm Sm2O3 in mol%. The parameters for shielding like that mass attenuation coefficient, MAC, linear attenuation coefficient, LAC, tenth value layers, TVL, half-value layers, HVL, effective atomic number, (Zeff), mean free path, MFP, electron density, Neff, electronic cross-sections, ECS, and total atomic cross-sections, ACS, were calculated between 0.015 and 15 MB of preparation glasses. The protection parameters of the current glasses are good in comparison to industrial materials used for nuclear shieldings, such as glass RS 253, ordinary concrete (OC), hematite serpenite (HS), or basalt magnet (BM). From the above mention results, the prepared glasses can be used as radiation safety materials.


Sign in / Sign up

Export Citation Format

Share Document