Biosorption of lanthanum using sericin/alginate/polyvinyl alcohol beads as a natural cation exchanger in a continuous fixed-bed column system

Author(s):  
Talles Barcelos da Costa ◽  
Meuris Gurgel Carlos da Silva ◽  
Melissa Gurgel Adeodato Vieira
2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2017 ◽  
Vol 77 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Dan Chen ◽  
Jun Zhou ◽  
Hongyu Wang ◽  
Kai Yang

Abstract There is an increasing need to explore effective and clean approaches for hazardous contamination removal from wastewaters. In this work, a novel bead adsorbent, polyvinyl alcohol–graphene oxide (PVA-GO) macroporous hydrogel bead was prepared as filter media for p-nitrophenol (PNP), dye methylene blue (MB), and heavy metal U(VI) removal from aqueous solution. Batch and fixed-bed column experiments were carried out to evaluate the adsorption capacities of PNP, MB, and U(VI) on this bead. From batch experiments, the maximum adsorption capacities of PNP, MB, and U(VI) reached 347.87, 422.90, and 327.55 mg/g. From the fixed-bed column experiments, the adsorption capacities of PNP, MB, and U(VI) decreased with initial concentration increasing from 100 to 400 mg/L. The adsorption capacities of PNP, MB, and U(VI) decreased with increasing flow rate. Also, the maximum adsorption capacity of PNP decreased as pH increased from 3 to 9, while MB and U(VI) presented opposite tendencies. Furthermore, the bed depth service Time (BDST) model showed good linear relationships for the three ions' adsorption processes in this fixed-bed column, which indicated that the BDST model effectively evaluated and optimized the adsorption process of PVA-GO macroporous hydrogel bead in fixed-bed columns for hazardous contaminant removal from wastewaters.


2015 ◽  
Vol 33 (2) ◽  
pp. 91-103 ◽  
Author(s):  
M. L. Cantuaria ◽  
E. S. Nascimento ◽  
A. F. Almeida Neto ◽  
O. A. A. dos Santos ◽  
M. G. A. Vieira

2018 ◽  
Vol 78 (8) ◽  
pp. 1812-1821 ◽  
Author(s):  
Mehdi Bahrami ◽  
Mohammad Javad Amiri ◽  
Bahareh Beigzadeh

Abstract The 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, as an aromatic hydrocarbon, is a dangerous and toxic organic pollutant among the agricultural pesticides. In this research, the performance of the biochar made from rice husk (BRH), granular activated carbon (GAC), and multi-walled carbon nanotubes (MWCNTs) was investigated for adsorption of 2,4-D in a fixed-bed column system. The influence of pH (2, 5, 7, 9), flow rate (0.5, 1, 1.5 mL min−1), bed depth (3, 6, 9 cm), and influent 2,4-D concentration (50, 100, 150, 300 mg L−1) on the adsorption process was evaluated. The resulting breakthrough curves indicated that the higher removal efficiency of 2,4-D took place at the lower flow rate, lower influent 2,4-D concentration, higher bed depth, and lower pH. While in most cases the removal ability of GAC was better than other adsorbents, generally, this study confirmed that the BRH, as a cheap and sustainable material, can be a viable alternative to GAC and MWCNTs for remediation and treatment scenarios, particularly in developing countries.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4128
Author(s):  
Silvia Carolina Moreno Rivas ◽  
Rosa Idalia Armenta Corral ◽  
María del Carmen Frasquillo Félix ◽  
Alma Rosa Islas Rubio ◽  
Luz Vázquez Moreno ◽  
...  

The aim of this study was to determine the Cd2+ removal capacity of a biosorbent system formed by Saccharomyces cerevisiae in calcium alginate beads. The adsorption of Cd2+ by a S. cerevisiae–alginate system was tested either by batch or fixed-bed column experiments. The S. cerevisiae–alginate system was characterized using dynamic light scattering (DLS, zeta potential), size, hardness, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy. Beads of the S. cerevisiae–alginate system showed a spherical–elliptical morphology, diameter of 1.62 ± 0.02 mm, 96% moisture, negative surface charge (−29.3 ± 2.57 mV), and texture stability during storage at 4 °C for 20 days. In batch conditions, the system adsorbed 4.3 µg of Cd2+/g of yeast–alginate beads, using a Cd2+ initial concentration of 5 mg/L. Adsorption capacity increased to 15.4 µg/g in a fixed-bed column system, removing 83% of total Cd2+. In conclusion, the yeast–alginate system is an efficient option for the removal of cadmium at low concentrations in drinking water.


Sign in / Sign up

Export Citation Format

Share Document