Design of a Salt-tolerant Gemini viscoelastic surfactant and the study of Construction of Wormlike Micelle structure in High-salinity aqueous environment

Author(s):  
Wenlong Zhang ◽  
Jincheng Mao ◽  
Zhenfu Jia ◽  
Xiaojiang Yang ◽  
Peng Zhang ◽  
...  
2020 ◽  
Author(s):  
Aidar Zamilevich Mustafin ◽  
Kexing Li ◽  
Mikhail Alekseevich Varfolomeev ◽  
Chengdong Yuan ◽  
Rail Ilgizarovich Kadyrov ◽  
...  

Genome ◽  
2017 ◽  
Vol 60 (2) ◽  
pp. 104-127 ◽  
Author(s):  
M.Y. Gruber ◽  
J. Xia ◽  
M. Yu ◽  
H. Steppuhn ◽  
K. Wall ◽  
...  

With the growing limitations on arable land, alfalfa (a widely cultivated, low-input forage) is now being selected to extend cultivation into saline lands for low-cost biofeedstock purposes. Here, minerals and transcriptome profiles were compared between two new salinity-tolerant North American alfalfa breeding populations and a more salinity-sensitive western Canadian alfalfa population grown under hydroponic saline conditions. All three populations accumulated two-fold higher sodium in roots than shoots as a function of increased electrical conductivity. At least 50% of differentially expressed genes (p < 0.05) were down-regulated in the salt-sensitive population growing under high salinity, while expression remained unchanged in the saline-tolerant populations. In particular, most reduction in transcript levels in the salt-sensitive population was observed in genes specifying cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signalling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. Transcript diversity for transcription factors, protein modification, and protein degradation genes was also more strongly affected in salt-tolerant CW064027 than in salt-tolerant Bridgeview and salt-sensitive Rangelander, while both saline-tolerant populations showed more substantial up-regulation in redox-related genes and B-ZIP transcripts. The report highlights the first use of bulked genotypes as replicated samples to compare the transcriptomes of obligate out-cross breeding populations in alfalfa.


2001 ◽  
Vol 49 (2) ◽  
pp. 185 ◽  
Author(s):  
M. Ajmal Khan ◽  
Bilquees Gul ◽  
Darrell J. Weber

Suaeda moquinii (Torrey) Greene (desert blite), a succulent shrub in the family Chenopodiaceae, is widely distributed in salt marshes of the western United States. Suaeda moquinii produces dimorphic seeds (soft brown and hard black). Both types of seeds were collected from a salt marsh in Faust, Utah. Experiments were conducted to determine the seed germination responses of the black and brown seeds to salinity and temperature. Brown seeds were found to be one of the most salt tolerant at the germination stage when compared to other halophytes. Brown seeds germinated (30%) at 1000 mM NaCl, but only a few black seeds germinated (8%) at 600 mM NaCl. Seed germination occurred in most saline treatments at the lowest thermoperiod (5–15˚C) tested. In some salinity treatments (600, 800, 1000 mM), further increases in temperature resulted in progressively decreased seed germination. Brown seeds germinated better and had a higher germination rate (germination velocity) than black seeds at all thermoperiods. The highest rate of germination of black seeds occurred at the lowest thermoperiod (5–15˚C). Recovery of germination for black seeds when transferred to distilled water after being in various salinity treatments for 20 days was nearly complete (82–100%) at the lowest thermoperiod (5–15˚C) but decreased with increase in the temperature. Brown seeds recovered substantially (59–97%) from salinity at all thermoperiods. Regression analyses indicated significant differences between the germination recovery of the black and brown seeds.


2005 ◽  
Vol 15 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Hans Martin Hanslin ◽  
Trine Eggen

Direct sowing is the simplest method of plant establishment for restoration and remediation purposes, but relatively few plants can establish under high salinity conditions. In this study, the ability of different seashore plants and grass cultivars to germinate in different dilutions of seawater (0–400 mM NaCl) was tested. Highest germination was found in distilled water or seawater dilutions up to 100 mM NaCl. When seawater concentrations were increased from 100 to 200 mM NaCl, a strong decline in germination percentage and rate was observed in less salt-tolerant species, such as Matricaria maritima and Achillea millefolium. The more salt-tolerant species, Plantago maritima, Juncus gerardii, Artemisia vulgaris, Agrostis spp. and Rumex spp., had a threshold salinity, where germination was significantly decreased in seawater dilutions between 200 and 400 mM NaCl. Even among the salt-tolerant species, only two, Agrostis stolonifera and Artemisia vulgaris, germinated at 400 mM. Variation in salinity response was observed among populations of Artemisia vulgaris and among cultivars of Festuca spp. Increasing salinity to 200 mM NaCl delayed germination in most species. Ungerminated seeds of most salinity-tolerant species were still viable after 21 d at the highest salinity (400 mM), and showed a rapid and high germination when transferred to distilled water. These species would be able to survive high salinity and germinate when the salinity of the sediments decreases through dilution or leaching of salts. The experiment revealed species and cultivars that will be of interest in further testing for restoration and remediation in saline habitats.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1631
Author(s):  
Md Azadul Haque ◽  
Mohd Y. Rafii ◽  
Martini Mohammad Yusoff ◽  
Nusaibah Syd Ali ◽  
Oladosu Yusuff ◽  
...  

Rice, generally classified as a typical glycophyte, often faces abiotic stresses such as excessive drought, high salinity, prolonged submergence, cold, and temperature, which significantly affects growth, development, and ultimately, grain yield. Among these negative impacts of abiotic factors in rice production, salinity stress is a major constraint, followed by drought. There is considerable research on the use of marker-assisted selection (MAS), genome editing techniques, and transgenic studies that have profoundly improved the present-day rice breeders’ toolboxes for developing salt-tolerant varieties. Salinity stresses significantly affect rice plants during seedling and reproductive stages. Hence, greater understanding and manipulation of genetic architecture in developing salt-tolerant rice varieties will significantly impact sustainable rice production. Rice plants’ susceptibility or tolerance to high salinity has been reported to be the result of coordinated actions of multiple stress-responsive quantitative trait loci (QTLs)/genes. This paper reviews recent literature, updating the effects of salinity stress on rice plants and germplasm collections and screening for salinity tolerance by different breeding techniques. Mapping and identification of QTLs salt tolerance genes are illuminated. The present review updates recent breeding for improvement in rice tolerance to salinity stress and how state-of-the-art tools such as MAS or genetic engineering and genome editing techniques, including mutagenesis and conventional breeding techniques, can assist in transferring salt-tolerant QTLs genes into elite rice genotypes, accelerating breeding of salt-resistant rice cultivars.


2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Fang Zhao ◽  
Hai-Yan Cao ◽  
Long-Sheng Zhao ◽  
Yi Zhang ◽  
Chun-Yang Li ◽  
...  

ABSTRACTAs classified by the Carbohydrate-Active Enzymes (CAZy) database, enzymes in glycoside hydrolase (GH) family 10 (GH10) are all monospecific or bifunctional xylanases (except a tomatinase), and no endo-β-1,4-glucanase has been reported in the family. Here, we identifiedArcticibacterium luteifluviistationiscarboxymethyl cellulase (AlCMCase) as a GH10 endo-β-1,4-glucanase.AlCMCase originated from an Arctic marine bacterium,Arcticibacterium luteifluviistationisSM1504T. It shows low identity (<35%) with other GH10 xylanases. The gene encodingAlCMCase was overexpressed inEscherichia coli. Biochemical characterization showed that recombinantAlCMCase is a cold-adapted and salt-tolerant enzyme.AlCMCase hydrolyzes cello- and xylo-configured substrates via an endoaction mode. However, in comparison to its significant cellulase activity, the xylanase activity ofAlCMCase is negligible. Correspondingly,AlCMCase has remarkable binding capacity for cello-oligosaccharides but no obvious binding capacity for xylo-oligosaccharides.AlCMCase and its homologs are grouped into a branch separate from other GH10 xylanases in a phylogenetic tree, and two homologs also displayed the same substrate specificity asAlCMCase. These results suggest thatAlCMCase and its homologs form a novel subfamily of GH10 enzymes that have robust endo-β-1,4-glucanase activity. In addition, given the cold-adapted and salt-tolerant characters ofAlCMCase, it may be a candidate biocatalyst under certain industrial conditions, such as low temperature or high salinity.IMPORTANCECellulase and xylanase have been widely used in the textile, pulp and paper, animal feed, and food-processing industries. Exploring novel cellulases and xylanases for biocatalysts continues to be a hot issue. Enzymes derived from the polar seas might have novel hydrolysis patterns, substrate specificities, or extremophilic properties that have great potential for both fundamental research and industrial applications. Here, we identified a novel cold-adapted and salt-tolerant endo-β-1,4-glucanase,AlCMCase, from an Arctic marine bacterium. It may be useful in certain industrial processes, such as under low temperature or high salinity. Moreover,AlCMCase is a bifunctional representative of glycoside hydrolase (GH) family 10 that preferentially hydrolyzes β-1,4-glucans. With its homologs, it represents a new subfamily in this family. Thus, this study sheds new light on the substrate specificity of GH10.


2020 ◽  
Vol 21 (13) ◽  
pp. 4586 ◽  
Author(s):  
Yujie Qu ◽  
Quandong Nong ◽  
Shuguang Jian ◽  
Hongfang Lu ◽  
Mingyong Zhang ◽  
...  

Pitaya (Hylocereus undatus) is a high salt-tolerant fruit, and ethylene response factors (ERFs) play important roles in transcription-regulating abiotic tolerance. To clarify the function of HuERF1 in the salt tolerance of pitaya, HuERF1 was heterogeneously expressed in Arabidopsis. HuERF1 had nuclear localization when HuERF1::GFP was expressed in Arabidopsis protoplasts and had transactivation activity when HuERF1 was expressed in yeast. The expression of HuERF1 in pitaya seedlings was significantly induced after exposure to ethylene and high salinity. Overexpression of HuERF1 in Arabidopsis conferred enhanced tolerance to salt stress, reduced the accumulation of superoxide (O2 · ¯ ) and hydrogen peroxide (H2O2), and improved antioxidant enzyme activities. These results indicate that HuERF1 is involved in ethylene-mediated salt stress tolerance, which may contribute to the salt tolerance of pitaya.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1739
Author(s):  
Kadir Uçgun ◽  
Jorge F. S. Ferreira ◽  
Xuan Liu ◽  
Jaime Barros da Silva Filho ◽  
Donald L. Suarez ◽  
...  

Information is scarce on the interaction of mineral deficiency and salinity. We evaluated two salt-tolerant spinach cultivars under potassium (K) doses (0.07, 0.15, 0.3, and 3.0 mmolc L−1) and saline irrigation (5, 30, 60, 120, and 160 mmolc L−1 NaCl) during germination and growth. There was no interaction between salinity and K. Salinity decreased germination percent (GP), not always significantly, and drastically reduced seedling biomass. ‘Raccoon’ significantly increased GP at 60 mmolc L−1 while ‘Gazelle’ maintained GP up to 60 or 120 mmolc L−1. After 50 days under saline irrigation, shoot biomass increased significantly at 30 and 60 mmolc L−1 at the lowest K dose but, in general, neither salinity nor K dose affected shoot biomass, suggesting that salinity supported plant growth at the most K-deficient dose. Salinity did not affect shoot N, P, or K but significantly reduced Ca, Mg, and S, although plants had no symptoms of salt toxicity or mineral deficiency. Although spinach seedlings are more sensitive to salt stress, plants adjusted to salinity with time. Potassium requirement for spinach growth was less than the current crop recommendation, allowing its cultivation with waters of moderate to high salinity without considerable reduction in yield, appearance, or mineral composition.


Sign in / Sign up

Export Citation Format

Share Document