scholarly journals Nano-engineering stable contact-based antimicrobials: Chemistry at the interface between nano-gold and bacteria

2021 ◽  
Vol 208 ◽  
pp. 112083
Author(s):  
Marija Vukomanovic ◽  
Maria del Mar Cendra ◽  
Aida Baelo ◽  
Eduard Torrents
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 971
Author(s):  
Oktawian Bialas ◽  
Mateusz Lis ◽  
Anna Woźniak ◽  
Marcin Adamiak

This paper analyses the possibility of obtaining surface-infused nano gold particles with the polyether ether ketone (PEEK) using picosecond laser treatment. To fuse particles into polymer, the raw surface of PEEK was sputtered with 99.99% Au and micromachined by an A-355 laser device for gold particle size reduction. Biomimetic pattern and parameters optimization were key properties of the design for biomedical application. The structures were investigated by employing surface topography in the presence of micron and sub-micron features. The energy of the laser beam stating the presence of polymer bond thermalisation with remelting due to high temperature was also taken into the account. The process was suited to avoid intensive surface modification that could compromise the mechanical properties of fragile cardiovascular devices. The initial material analysis was conducted by power–depth dependence using confocal microscopy. The evaluation of gold particle size reduction was performed with scanning electron microscopy (SEM), secondary electron (SE) and quadrant backscatter electron detector (QBSD) and energy dispersive spectroscopy (EDS) analysis. The visibility of the constituted coating was checked by a commercial grade X-ray that is commonly used in hospitals. Attempts to reduce deposited gold coating to the size of Au nanoparticles (Au NPs) and to fuse them into the groove using a laser beam have been successfully completed. The relationship between the laser power and the characteristics of the particles remaining in the laser irradiation area has been established. A significant increase in quantity was achieved using laser power with a minimum power of 15 mW. The obtained results allowed for the continuation of the pilot study for augmented research and material properties analysis.


2008 ◽  
Vol 347 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Nielson F.P. Ribeiro ◽  
Fabiana M.T. Mendes ◽  
Carlos A.C. Perez ◽  
Mariana M.V.M. Souza ◽  
Martin Schmal

2016 ◽  
Vol 23 (8) ◽  
pp. 3059-3068 ◽  
Author(s):  
Chunyan Wang ◽  
Yi Xu ◽  
Rong Wang ◽  
Huazhou Zhao ◽  
Songtao Xiang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1661
Author(s):  
Mei-Hsiu Chen ◽  
Tse-Ying Liu ◽  
Yu-Chiao Chen ◽  
Ming-Hong Chen

Glioblastoma, formerly known as glioblastoma multiforme (GBM), is refractory to existing adjuvant chemotherapy and radiotherapy. We successfully synthesized a complex, Au–OMV, with two specific nanoparticles: gold nanoparticles (AuNPs) and outer-membrane vesicles (OMVs) from E. coli. Au–OMV, when combined with radiotherapy, produced radiosensitizing and immuno-modulatory effects that successfully suppressed tumor growth in both subcutaneous G261 tumor-bearing and in situ (brain) tumor-bearing C57BL/6 mice. Longer survival was also noted with in situ tumor-bearing mice treated with Au–OMV and radiotherapy. The mechanisms for the successful treatment were evaluated. Intracellular reactive oxygen species (ROS) greatly increased in response to Au–OMV in combination with radiotherapy in G261 glioma cells. Furthermore, with a co-culture of G261 glioma cells and RAW 264.7 macrophages, we found that GL261 cell viability was related to chemotaxis of macrophages and TNF-α production.


2021 ◽  
Vol 11 (5) ◽  
pp. 618-626
Author(s):  
Yali Liu ◽  
Changpeng Hu ◽  
Min Zhou ◽  
Qian Zhang ◽  
Qin Tang ◽  
...  

Doxorubicin (DOX) is widely used as a traditional chemotherapy drug in tumor treatment, but its dose-dependent side effects make it susceptible to acquired resistance. CXCR4 is a chemokine receptor that has high expression in many cancers, including lung cancer. In this work, we studied the possibility of using CXCR4 antagonist, AMD3100, as a targeting molecule to targeted delivery of DOX to CXCR4 expressing lung cancer cells through conjugated gold nanoparticles (Au NPs). DOX was intercalated inside the pH-responsive doublestrand DNA (dsDNA) and then conveniently loaded onto the Au NPs. The CXCR4 antagonist, AMD3100, was bonded with LA-PEG, and then conjugated to the surface of Au-S bond. The doxorubicin release from AuNPs@DOX@AMD3100 NPs was in a pH-dependent model, and specificity of AuNPs@DOX@AMD3100 nanoparticle was verified by using free DOX and Au@DOX NPs as control. Results in this work not only confirmed the possibility of using AMD3100 as a targeting ligand for tumor-targeted treatment, but also suggested that the non-toxic Au NPs is a prospect nanocarrier for target design of cancer therapy.


2016 ◽  
Vol 18 (43) ◽  
pp. 30079-30085 ◽  
Author(s):  
Y. Lu ◽  
K. Wang ◽  
F.-R. Chen ◽  
W. Zhang ◽  
M. L. Sui

We report the migration and segregation behaviors of Au atoms in solution during real time, by exploiting a charging effect in a dilute HAuCl4 water solution under electron irradiation, to allow the growth kinetics of Au nanoparticles to be successfully controlled.


Sign in / Sign up

Export Citation Format

Share Document