Directional solidification with a two-phase zone: thermodiffusion and temperature-dependent diffusivity

2006 ◽  
Vol 37 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
D.V. Alexandrov ◽  
D.L. Aseev
2003 ◽  
Vol 17 (08n09) ◽  
pp. 1503-1509
Author(s):  
Ma Ying ◽  
Hao Yuan ◽  
Feng Yun Yan ◽  
Hong Jun Liu ◽  
Chang Min Suh

The continuous directional solidification technique of 5 kinds of special ZA alloys with eutectic, eutectoid and peritectic transformations under the condition of continuous casting by heated mold was studied. The optimum fitting range of technique factors in each alloy is found. The results show that the operation of guiding ingot is the key of the technique to produce directional solidification ZA alloy line by heated mold in continuous casting method. Outlet temperature, pulling speed, cooling condition, alloy composition and pressure head have direct influences on the surface quality of ingot. There is a balance between heat and force in the two-phase zone of solid and liquid. Only adjusting technique parameters with the balance and keeping a good place of the interface between solid and liquid, can the smooth ZA alloy line be continuously pulled out.


2017 ◽  
Vol 10 (1) ◽  
pp. 13-22
Author(s):  
Renyi Cao ◽  
Junjie Xu ◽  
Xiaoping Yang ◽  
Renkai Jiang ◽  
Changchao Chen

During oilfield development, there exist multi-cycle gas–water mutual displacement processes. This means that a cycling process such as water driving gas–gas driving water–water driving gas is used for the operation of injection and production in a single well (such as foam huff and puff in single well or water-bearing gas storage). In this paper, by using core- and micro-pore scales model, we study the distribution of gas and water and the flow process of gas-water mutual displacement. We find that gas and water are easier to disperse in the porous media and do not flow in continuous gas and water phases. The Jamin effect of the gas or bubble becomes more severe and makes the flow mechanism of multi-cycle gas–water displacement different from the conventional water driving gas or gas driving water processes. Based on experiments of gas–water mutual displacement, the changing mechanism of gas–water displacement is determined. The results indicate that (1) after gas–water mutual displacement, the residual gas saturation of a gas–water coexistence zone becomes larger and the two-phase zone becomes narrower, (2) increasing the number of injection and production cycles causes the relative permeability of gas to increase and relative permeability for water to decrease, (3) it becomes easier for gas to intrude and the invaded water becomes more difficult to drive out and (4) the microcosmic fluid distribution of each stage have a great difference, which caused the two-phase region becomes narrower and effective volume of gas storage becomes narrower.


2020 ◽  
Vol 235 (6-7) ◽  
pp. 213-223
Author(s):  
Hilke Petersen ◽  
Lars Robben ◽  
Thorsten M. Gesing

AbstractThe temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered $P\overline{4}3n$ (> 218.6(1 K) to a statically disordered (<218.6(1) K) SOD template in $P\overline{4}3n$. The loss of the dynamics of the template anion during cooling causes an increase of disorder, indicated by an unusual intensity decrease of the 011-reflection and an increase of the Re-O2 bond length with decreasing temperature. Additionally, Raman spectroscopy shows a distortion of the ReO4 anion. Upon heating the thermal expansion of the sodalite cage originated in the tilt-mechanism causes the second phase transition at 442(1) K resulting in a symmetry-increase from $P\overline{4}3n$ to $Pm\overline{3}n$, the structure with the sodalites full framework expansion. Noteworthy is the high decomposition temperature of 1320(10) K.


1983 ◽  
Vol 105 (3) ◽  
pp. 485-492 ◽  
Author(s):  
K. S. Udell

Heat and mass transfer characteristics of a sand-water-steam system heated at the top and cooled at the bottom were studied. It was found that at steady-state conditions the system segregated into three regions. The top region was conduction-dominated with the voids containing a stationary superheated steam. The middle region was convection-dominated, nearly isothermal, and exhibited an upward flow of the liquid by capillary forces and a downward flow of steam due to a slight pressure gradient. The bottom portion contained a stationary compressed liquid and was also conduction dominated. The length of the two-phase convection zone was evaluated through the application of Darcy’s equations for two-phase flow and correlations of relative permeabilities and capillary pressure data. The model was in excellent agreement with the observed results, predicting a decreasing two-phase zone length with increasing heat flux. The thermodynamics of the two-phase zone were also analyzed. It was found that the vapor phase was in a superheated state as described by the Kelvin equation for vapor pressure lowering. Also, it was evident that the liquid must also be superheated for thermodynamic equilibrium to result. A stability analysis demonstrated that the superheated liquid can exist in an unconditionally stable state under conditions typical of porous systems. The degree of liquid superheat within the two-phase zone of these experiments was obtained.


2010 ◽  
Vol 426-427 ◽  
pp. 581-584 ◽  
Author(s):  
Rong Xi Yi ◽  
Shi Kun Xie ◽  
Xiao Qiu Zheng ◽  
Yong Ping Ai

The semi-solid slurry of AlSi7 alloy was prepared by near-liquids cast processing. The effects of different content of RE on the cast performance and the semi-solid remelting performance in AlSi7 alloy was researched. The results indicated that adding RE will widen the AlSi7 alloy solid-liquid two-phase zone temperature and refine the grains, silicon will obvious metamorphoses. The best amount of RE is about 0.5%. Its semi-solid remelting organization is equilateral globular grains.


2001 ◽  
Vol 49 (5) ◽  
pp. 759-764 ◽  
Author(s):  
D.V. Alexandrov
Keyword(s):  

2021 ◽  
Author(s):  
Chandan Kumawat ◽  
Bhupendra Kumar Sharma ◽  
Khalid Saad Mekheimer

Abstract A two-phase blood flow model is considered to analyze the fluid flow and heat transfer in a curved tube with time-variant stenosis. In both core and plasma regions, the variable viscosity model ( Hematocrit and non linear temperature-dependent, respectively) is considered. A toroidal coordinate system is considered to describe the governing equations. The perturbation technique in terms of perturbation parameter ε is used to obtain the temperature profile of blood flow. In order to find the velocity, wall shear stress and impedance profiles, a second-order finite difference method is employed with the accuracy of 10−6 in the each iteration. Under the conditions of fully-developed flow and mild stenosis, the significance of various physical parameters on the blood velocity, temperature, wall shear stress (WSS) and impedance are investigated with the help of graphs. A validation of our results has been presented and comparison has been made with the previously published work and present study, and it revels the good agreement with published work. The present mathematical study suggested that arterial curvature increase the fear of deposition of plaque (atherosclerosis), while, the use of thermal radiation in heat therapies lowers this risk. The positive add in the value of λ1 causes to increase in plasma viscosity; as a result, blood flow velocity in the stenosed artery decreases due to the assumption of temperature-dependent viscosity of the plasma region. Clinical researchers and biologists can adopt the present mathematical study to lower the risk of lipid deposition, predict cardiovascular disease risk and current state of disease by understanding the symptomatic spectrum, and then diagnose patients based on the risk.


Sign in / Sign up

Export Citation Format

Share Document