Effect of temperature on the growth of TiN thin films by oblique angle sputter-deposition: A three-dimensional atomistic computational study

2021 ◽  
Vol 197 ◽  
pp. 110662
Author(s):  
Rubenson Mareus ◽  
Cédric Mastail ◽  
Florin Nita ◽  
Anny Michel ◽  
Grégory Abadias
2006 ◽  
Vol 326-328 ◽  
pp. 215-218 ◽  
Author(s):  
Yun Hee Lee ◽  
Yong Hak Huh ◽  
Ju Young Kim ◽  
Seung Hoon Nahm ◽  
Jae Il Jang ◽  
...  

We tried to apply the nanoindentation technique to yield strength characterization by modifying a previous research. Although the yield strength determining technique developed by Kramer et al. has been successfully demonstrated for large scale indentations on bulky metals, its applicability is still doubtful to nanoscale indentations on thin films with severe roughness, anisotropy, and interfacial constraint. In order to overcome these problems, we combined the nanoindentation technique with a three-dimensional indent visualization technique in this study. Nanoindentation tests were performed for Au and TiN thin films and their corresponding indents were scanned by using an atomic force microscope. From the three-dimensional pile-up morphology, a circular pile-up boundary was measured and input into the yield strength formulation as an effective yielded zone radius. The yield strengths calculated were directly compared with those from the microtensile test.


2015 ◽  
Vol 33 (3) ◽  
pp. 541-548 ◽  
Author(s):  
Ştefan Ţălu ◽  
Sebastian Stach ◽  
Shahoo Valedbagi ◽  
Reza Bavadi ◽  
S. Mohammad Elahi ◽  
...  

Abstract The study presents a multi-scale microstructural characterization of three-dimensional (3-D) micro-textured surface of titanium nitride (TiN) thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM) analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α). Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.


Author(s):  
M. A. Kirk ◽  
M. C. Baker ◽  
B. J. Kestel ◽  
H. W. Weber

It is well known that a number of compound superconductors with the A15 structure undergo a martensite transformation when cooled to the superconducting state. Nb3Sn is one of those compounds that transforms, at least partially, from a cubic to tetragonal structure near 43 K. To our knowledge this transformation in Nb3Sn has not been studied by TEM. In fact, the only low temperature TEM study of an A15 material, V3Si, was performed by Goringe and Valdre over 20 years ago. They found the martensite structure in some foil areas at temperatures between 11 and 29 K, accompanied by faults that consisted of coherent twin boundaries on {110} planes. In pursuing our studies of irradiation defects in superconductors, we are the first to observe by TEM a similar martensite structure in Nb3Sn.Samples of Nb3Sn suitable for TEM studies have been produced by both a liquid solute diffusion reaction and by sputter deposition of thin films.


Author(s):  
Oxana A. Tkachenko ◽  
Svetlana A. Tkachenko ◽  
Victoria Timchenko ◽  
John A. Reizes ◽  
Guan Heng Yeoh ◽  
...  

2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


2021 ◽  
pp. 109844
Author(s):  
Zaoli Zhang ◽  
Arsham Ghasemi ◽  
Nikola Koutná ◽  
Zhen Xu ◽  
Thomas Grünstäudl ◽  
...  

2021 ◽  
Author(s):  
Arindam Mondal ◽  
Akash Lata ◽  
Aarya Prabhakaran ◽  
Satyajit Gupta

Application of three-dimensional (3D)-halide perovskites (HaP) in photocatalysis encourages the new exercise with two-dimensional (2D) HaP based thin-films for photocatalytic degradation of dye. The reduced dimensionality to 2D-HaPs, with a...


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document