Pile foundation analysis and design using experimental data and 3-D numerical analysis

2009 ◽  
Vol 36 (5) ◽  
pp. 819-836 ◽  
Author(s):  
Emilios M. Comodromos ◽  
Mello C. Papadopoulou ◽  
Ioannis K. Rentzeperis
2004 ◽  
Vol 19 (12) ◽  
pp. 3607-3613 ◽  
Author(s):  
H. Iikawa ◽  
M. Nakao ◽  
K. Izumi

Separation by implemented oxygen (SIMOX)(111) substrates have been formed by oxygen-ion (16O+) implantation into Si(111), showing that a so-called “dose-window” at 16O+-implantation into Si differs from Si(100) to Si(111). In SIMOX(100), an oxygen dose of 4 × 1017/cm2 into Si(100) is widely recognized as the dose-window when the acceleration energy is 180 keV. For the first time, our work shows that an oxygen dose of 5 × 1017/cm2 into Si(111) is the dose-window for the formation of SIMOX(111) substrates when the acceleration energy is 180 keV. The difference between dose-windows is caused by anisotropy of the crystal orientation during growth of the faceted buried SiO2. We also numerically analyzed the data at different oxidation velocities for each facet of the polyhedral SiO2 islands. Numerical analysis results show good agreement with the experimental data.


2003 ◽  
Vol 9 (3) ◽  
pp. 770-775 ◽  
Author(s):  
Soon-Cheol Kong ◽  
Seong-Hae Ok ◽  
Young-Wan Choi ◽  
Joong-Seon Choe ◽  
Yong-Hwan Kwon ◽  
...  

2013 ◽  
pp. 633-640
Author(s):  
P Jongpradist ◽  
A Sawatparnich ◽  
S Youwai ◽  
J Sunitsakul ◽  
W Kongkitkul ◽  
...  

2017 ◽  
Vol 37 (4) ◽  
pp. 238-246
Author(s):  
Uri Breiman ◽  
Jacob Aboudi ◽  
Rami Haj-Ali

The compressive strength of unidirectional composites is strongly influenced by the elastic and strength properties of the fiber and matrix phases, as well as by the local geometrical properties, such as fiber volume fraction, misalignment, and waviness. In the present investigation, two microbuckling criteria are proposed and examined against a large volume of measured data of unidirectional composites taken from the literature. The first criterion is based on the compressive strength formulation using the buckling of Timoshenko’s beam. It contains a single parameter that can be determined according to the best fit to experimental data for various types of polymeric matrix composites. The second criterion is based on buckling-wave propagation analogy using the solution of an eigenvalue problem. Both criteria provide closed-form expressions for the compressive strength of unidirectional composites. We propose modifications of the two criteria by a fitting approach, for a wide range of fiber volume fractions, applied to four classes of unidirectional composite systems. Furthermore, a normalized form of the two models is presented after calibration in order to compare their prediction against experimental data for each of the material systems. The new modified criteria are shown to give a good match to a wide range of unidirectional composite systems. They can be employed as practical compression failure criteria in the analysis and design of laminated structures.


2014 ◽  
Vol 891-892 ◽  
pp. 17-23 ◽  
Author(s):  
Sudip Basack

The ocean environment necessitates the pile foundation supporting the offshore structures to be designed against cyclic load, moments and torques initiated by a combined action of waves, wind, tides, currents, etc. Such a complex loading condition induces progressive degradation in the pile-soil interactive performance introducing significant reduction in bearing capacity with increased settlement and displacements. The Author has carried out extensive experimental (laboratory model tests) and theoretical investigations (boundary element analysis) to study the salient features of this degradation and developed a design methodology for offshore pile foundation. The works conducted and the major conclusions drawn are highlighted in this paper.


2001 ◽  
Author(s):  
Hooman Rezaei ◽  
Abraham Engeda ◽  
Paul Haley

Abstract The objective of this work was to perform numerical analysis of the flow inside a modified single stage CVHF 1280 Trane centrifugal compressor’s vaneless diffuser and volute. Gambit was utilized to read the casing geometry and generating the vaneless diffuser. An unstructured mesh was generated for the path from vaneless diffuser inlet to conic diffuser outlet. At the same time a meanline analysis was performed corresponding to speeds and mass flow rates of the experimental data in order to obtain the absolute velocity and flow angle leaving the impeller for those operating conditions. These values and experimental data were used as inlet and outlet boundary conditions for the simulations. Simulations were performed in Fluent 5.0 for three speeds of 2000, 3000 and 3497 RPM and mass flow rates of minimum, medium and maximum. Results are in good agreement with the experimental ones and present the flow structures inside the vaneless diffuser and volute.


Author(s):  
H. Ashrafiuon ◽  
N. K. Mani

Abstract The symbolic computing system MACSYMA is used to automatically generate the explicit equations necessary to represent the kinematic constraints and system dynamics and to compute the design sensitivities for optimal design of any multibody system. The logic to construct system matrices and vectors involved in the analysis and design equations is implemented as general purpose MACSYMA programs. All necessary manipulations are performed by MACSYMA and the equations are output as FORTRAN statements that can be compiled and executed. This approach results in a computational saving of up to 95% compared to using a general purpose programs. The approach is general in nature and is applicable to any multibody system. Examples are presented to demonstrate the effectiveness of the approach.


Sign in / Sign up

Export Citation Format

Share Document