Promoting the thermal transport via understanding the intrinsic relation between thermal conductivity and interfacial contact probability in the polymeric composites with hybrid fillers

Author(s):  
Wen Qi ◽  
Miao Liu ◽  
Jiale Wu ◽  
Qing Xie ◽  
Lin Chen ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (13) ◽  
pp. 7388-7399 ◽  
Author(s):  
Yuyuan Zhang ◽  
Wei Gao ◽  
Yujing Li ◽  
Dehe Zhao ◽  
Hong Yin

The synergistic effect of h-BN/c-BN/EP on the enhancement of thermal conductivity of polymeric composites has been demonstrated.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1264 ◽  
Author(s):  
Li Zhang ◽  
Wenfeng Zhu ◽  
Ying Huang ◽  
Shuhua Qi

One-dimensional silver nanowires (AgNWs) and two-dimensional graphene oxide (GO) were combined to construct a three-dimensional network structure. The AgNWs can effectively inhibit stacking of adjacent GO sheets by occupying regions between layers of GO. Moreover, the GO sheets embedded in the gaps of the AgNWs network increase the interfacial contact area between the AgNWs and the epoxy matrix, resulting in the formation of more efficient phonon transport channels. To prepare an epoxy-based thermal conductive composite, hybrid networks were fabricated and added to epoxy resin using a solution mixing method. Significant synergistic effects were observed between the AgNWs and GO sheets. The thermal conductivity of epoxy composites filled with 10 wt.% AgNW/GO hybrids was found to be 1.2 W/mK and the impact strength was 28.85 KJ/m2, which are higher than the corresponding values of composites containing AgNWs or GO sheets alone. Thus, the thermal conductivity and impact strength of the epoxy composites were improved. The additive effects are mainly owing to the improved interfacial contact between the hybrid fillers and the epoxy resin, resulting in a more efficient phonon transport network. The use of hybrid fillers with different structures is a simple and scalable strategy for manufacturing high-performance thermally conductive materials for electronic packaging.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe6000
Author(s):  
Lin Yang ◽  
Madeleine P. Gordon ◽  
Akanksha K. Menon ◽  
Alexandra Bruefach ◽  
Kyle Haas ◽  
...  

Organic-inorganic hybrids have recently emerged as a class of high-performing thermoelectric materials that are lightweight and mechanically flexible. However, the fundamental electrical and thermal transport in these materials has remained elusive due to the heterogeneity of bulk, polycrystalline, thin films reported thus far. Here, we systematically investigate a model hybrid comprising a single core/shell nanowire of Te-PEDOT:PSS. We show that as the nanowire diameter is reduced, the electrical conductivity increases and the thermal conductivity decreases, while the Seebeck coefficient remains nearly constant—this collectively results in a figure of merit, ZT, of 0.54 at 400 K. The origin of the decoupling of charge and heat transport lies in the fact that electrical transport occurs through the organic shell, while thermal transport is driven by the inorganic core. This study establishes design principles for high-performing thermoelectrics that leverage the unique interactions occurring at the interfaces of hybrid nanowires.


2021 ◽  
pp. 095400832110003
Author(s):  
Ruiyi Li ◽  
Chengcheng Ding ◽  
Juan Yu ◽  
Xiaodong Wang ◽  
Pei Huang

In this article, the polyimide (PI) composite films with synergistically improving thermal conductivity were prepared by adding a few graphene nanoplatelets (GNP) and various hexagonal boron nitride (h-BN) contents into the PI matrix. The thermal conductivity of PI composite film with 1 wt% GNP and 30 wt% h-BN content was 1.21 W(m·k)− 1, which was higher than that of the PI composite film with 30 wt% h-BN content (0.45 W(m·k)− 1), the synergistic efficiency of GNP under various h-BN content (10 wt%, 20 wt%, and 30 wt%) were 1.70, 2.71, and 3.09, respectively. And it was found that the increased h-BN content can suppress the dielectric properties caused by GNP in the matrix. The dielectric permittivity and dielectric loss tangent of 1 wt% GNP/PI composite film were 10.69, 0.661 at 103 Hz, respectively, and that of the 30 wt% h-BN + GNP/PI composite film were 4.29 and 0.1367, respectively. Moreover, the mechanical properties of the PI composite film were suitable for practical applications. And the heat resistance index and the residual rate at 700°C of PI composite film increased to 326.8°C, 74.43%, respectively, and these of PI film were 292.6°C and 59.26%. Thus, it may provide a reference value for applying the filler hybridization/PI film in the electronic packaging materials.


RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 24456-24465
Author(s):  
Rapaka S. C. Bose ◽  
K. Ramesh

Polycrystalline p-type Sb1.5Bi0.5Te3 (SBT) and n-type Bi2Te2.7Se0.3 (BTS) compounds possessing layered crystal structure show anisotropic electronic and thermal transport properties.


2006 ◽  
Vol 317-318 ◽  
pp. 501-504 ◽  
Author(s):  
Mineaki Matsumoto ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Effect of La2O3 addition on thermal conductivity and high temperature stability of YSZ coating produced by EB-PVD was investigated. La2O3 was selected as an additive because it had a significant effect on suppressing densification of YSZ. The developed coating showed extremely low thermal conductivity as well as high resistance to sintering. Microstructural observation revealed that the coating had fine feather-like subcolumns and nanopores, which contributed to limit thermal transport. These nanostructures were thought to be formed by suppressing densification during deposition.


Author(s):  
Fuhua Jia ◽  
Emmanuel Oluwaseyi Fagbohun ◽  
Qianyu Wang ◽  
Duoyin Zhu ◽  
Jianling Zhang ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoyang Xiong ◽  
Yue Qin ◽  
Linhong Li ◽  
Guoyong Yang ◽  
Maohua Li ◽  
...  

In order to meet the requirement of thermal performance with the rapid development of high-performance electronic devices, constructing a three-dimensional thermal transport skeleton is an effective method for enhancing thermal...


2010 ◽  
Vol 14 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Sunday Etuk ◽  
Louis Akpabio ◽  
Ita Akpan

Thermal conductivity values at the temperature of 301-303K have been measured for Zea mays straw board as well as Zea mays heartwood (cork) board. Comparative study of the thermal conductivity values of the boards reveal that Zea mays heartwood board has a lower thermal conductivity value to that of the straw board. The study also shows that the straw board is denser than the heartwood board. Specific heat capacity value is less in value for the heartwood board than the straw board. These parameters also affect the thermal diffusivity as well as thermal absorptivity values for the two types of boards. The result favours the two boards as thermal insulators for thermal envelop but with heartwood board as a preferred insulation material than the straw board.


2020 ◽  
Author(s):  
Jianqin Tang ◽  
Jonathan Skelton

We present a systematic first-principles modelling study of the structural dynamics and thermal transport in the CoSb<sub>3</sub> skutterudites with a series of noble-gas filler atoms. A range of analysis techniques are proposed to estimate the filler rattling frequencies, to quantify the separate impacts of filling on the phonon group velocities and lifetimes, and to show how changes to the phonon spectra and interaction strengths lead to suppressed lifetimes. The fillers are found to reduce the thermal conductivity of the CoSb<sub>3</sub> framework by up to 15 % primarily by suppressing the group velocities of low-lying optic modes. Calculations show that the filler rattling frequencies are determined by a detailed balance of increasing atomic mass and stronger interactions with the framework, and are a good predictor of their impact on the heat transport. Lowering the rattling frequency below ~1.5 THz by selecting heavy fillers that interact weakly with the framework is predicted to produce a much larger suppression of the thermal transport, by inducing avoided crossings in the acoustic-mode dispersion and facilitating resonant scattering with a consequent large reduction in the lifetimes. Approximate rattling frequencies determined from the harmonic force constants may therefore provide a useful metric for selecting filler atoms to optimise the thermal transport in skutterudites and other cage compounds such as clathrates.


Sign in / Sign up

Export Citation Format

Share Document