Flexural behaviour of flax FRP double tube confined coconut fibre reinforced concrete beams with interlocking interface

2018 ◽  
Vol 192 ◽  
pp. 217-224 ◽  
Author(s):  
Jiaxin Chen ◽  
Nawawi Chouw
2021 ◽  
Vol 15 (1) ◽  
pp. 81-92
Author(s):  
Constantinos B. Demakos ◽  
Constantinos C. Repapis ◽  
Dimitros P. Drivas

Aims: The aim of this paper is to investigate the influence of the volume fraction of fibres, the depth of the beam and the shear span-to-depth ratio on the shear strength of steel fibre reinforced concrete beams. Background: Concrete is a material widely used in structures, as it has high compressive strength and stiffness with low cost manufacturing. However, it presents low tensile strength and ductility. Therefore, through years various materials have been embedded inside it to improve its properties, one of which is steel fibres. Steel fibre reinforced concrete presents improved flexural, tensile, shear and torsional strength and post-cracking ductility. Objective: A better understanding of the shear performance of SFRC could lead to improved behaviour and higher safety of structures subject to high shear forces. Therefore, the influence of steel fibres on shear strength of reinforced concrete beams without transverse reinforcement is experimentally investigated. Methods: Eighteen concrete beams were constructed for this purpose and tested under monotonic four-point bending, six of which were made of plain concrete and twelve of SFRC. Two different aspect ratios of beams, steel fibres volume fractions and shear span-to-depth ratios were selected. Results: During the experimental tests, the ultimate loading, deformation at the mid-span, propagation of cracks and failure mode were detected. From the tests, it was shown that SFRC beams with high volume fractions of fibres exhibited an increased shear capacity. Conclusion: The addition of steel fibres resulted in a slight increase of the compressive strength and a significant increase in the tensile strength of concrete and shear resistance capacity of the beam. Moreover, these beams exhibit a more ductile behaviour. Empirical relations predicting the shear strength capacity of fibre reinforced concrete beams were revised and applied successfully to verify the experimental results obtained in this study.


Author(s):  
Eswari Natarajan

Abstract: The effect of fibre content on the Strength and ductility behaviour of hybrid fibre reinforced concrete (HFRC) beams having different fibre volume fractions was investigated. The parameters of this investigation included service load, ultimate load, service load deflection, ultimate load deflection, crack width, deflection ductility and energy ductility. The fibre volume fraction (Vf) ranged from 0.0 to 2.0 percent. Steel and polyolefin fibres were combined in different proportions and their impact on the above parameters was studied. The ductile response of hybrid fibre reinforced concrete beams was compared with that of control beam. The test results show that addition of 2.0 percent by volume of hybrid fibres improve the strength and ductility appreciably. Empirical expressions for predicting the strength and ductility of hybrid fibre reinforced concrete (HFRC) are proposed based on regression analysis. A close agreement has been obtained between the predicted and experimental results.


2017 ◽  
Vol 23 (6) ◽  
pp. 806-813 ◽  
Author(s):  
Inmaculada MARTÍNEZ-PÉREZ ◽  
Juozas VALIVONIS ◽  
Remigijus ŠALNA ◽  
Alfonso COBO-ESCAMILLA

The building of structures from steel fibre reinforced concrete (SFRC) in the external and conventional rein­forced concrete (RC) in the internal layer represents an economical alternative of structures effectively using SFRC. The paper presents test results of flexural behaviour of layered beams with SFRC external layers and RC internal layer. The behaviour of these beams is compared to test results of SFRC and conventional RC beams. The test results show, that the flexural load capacity for all series of beams is nearly similar, but the deflections of layered beams are less comparing to monolithic ones. It also been shown that the equations indicated in the Eurocode 2 can be used to design the flexural reinforcement in layered SFRC beams.


Sign in / Sign up

Export Citation Format

Share Document