Development length and bond strength equations for FRP bars embedded in concrete

2020 ◽  
Vol 251 ◽  
pp. 112662
Author(s):  
Bogachan Basaran ◽  
Ilker Kalkan
2022 ◽  
pp. 136943322110651
Author(s):  
Ruiming Cao ◽  
Bai Zhang ◽  
Luming Wang ◽  
Jianming Ding ◽  
Xianhua Chen

Alkali-activated materials (AAMs) are considered an eco-friendly alternative to ordinary Portland cement (OPC) for mitigating greenhouse-gas emissions and enabling efficient waste recycling. In this paper, an innovative seawater sea-sand concrete (SWSSC), that is, seawater sea-sand alkali-activated concrete (SWSSAAC), was developed using AAMs instead of OPC to explore the application of marine resources and to improve the durability of conventional SWSSC structures. Then, three types of fiber-reinforced polymer (FRP) bars, that is, basalt-FRP, glass-FRP, and carbon-FRP bars, were selected to investigate their bond behavior with SWSSAAC at different alkaline dosages (3%, 4%, and 6% Na2O contents). The experimental results manifested that the utilization of the alkali-activated binders can increase the splitting tensile strength ( ft) of the concrete due to the denser microstructures of AAMs than OPC pastes. This improved characteristic was helpful in enhancing the bond performance of FRP bars, especially the slope of bond-slip curves in the ascending section (i.e., bond stiffness). Approximately three times enhancement in terms of the initial bond rigidity was achieved with SWSSAAC compared to SWSSC at the same concrete strength. Furthermore, compared with the BFRP and GFRP bars, the specimens reinforced with the CFRP bars experienced higher bond strength and bond rigidity due to their relatively high tensile strength and elastic modulus. Additionally, significant improvements in initial bond stiffness and bond strength were also observed as the alkaline contents (i.e., concrete strength) of the SWSSAAC were aggrandized, demonstrating the integration of the FRP bars and SWSSAAC is achievable, which contributes to an innovative channel for the development of SWSSC pavements or structures.


2021 ◽  
Vol 267 ◽  
pp. 120919
Author(s):  
Ahmed Godat ◽  
Shaima Aldaweela ◽  
Hamda Aljaberi ◽  
Noura Al Tamimi ◽  
Ebtesam Alghafri

2000 ◽  
Vol 3 (3) ◽  
pp. 245-253 ◽  
Author(s):  
P. Mendis ◽  
C. French

The use of high-strength concrete is becoming popular around the world. The american code, ACI 318–95 is used in many countries to calculate the development length of deformed bars in tension. However, current design provisions of ACI 318–95 are based on empirical relationships developed from tests on normal strength concrete. The results of a series of tests on high-strength concrete, reported in the literature, from six research studies are used to review the existing recommendations in ACI 318–95 for design of splices and anchorage of reinforcement. It is shown that ACI 318–95 equations may be unconservative for some cases beyond 62 MPa (9 ksi).


Technologies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 42 ◽  
Author(s):  
Hamed Bolandi ◽  
Wolfgang Banzhaf ◽  
Nizar Lajnef ◽  
Kaveh Barri ◽  
Amir H. Alavi

Accurate prediction of bond behavior of fiber reinforcement polymer (FRP) concrete has a pivotal role in the construction industry. This paper presents a soft computing method called multi-gene genetic programming (MGGP) to develop an intelligent prediction model for the bond strength of FRP bars in concrete. The main advantage of the MGGP method over other similar methods is that it can formulate the bond strength by combining the capabilities of both standard genetic programming and classical regression. A number of parameters affecting the bond strength of FRP bars were identified and fed into the MGGP algorithm. The algorithm was trained using an experimental database including 223 test results collected from the literature. The proposed MGGP model accurately predicts the bond strength of FRP bars in concrete. The newly defined predictor variables were found to be efficient in characterizing the bond strength. The derived equation has better performance than the widely-used American Concrete Institute (ACI) model.


2010 ◽  
Vol 168-170 ◽  
pp. 2134-2138
Author(s):  
Xin Sheng Xu

Surface-adhering-sand screw-thread-form FRP bar was produced. By symmetrical pull-out test research to a certain depth in FRP (Fiber Reinforced Polymer) bar concrete, the bond mechanism, the failure mechanism, the bond strength and the slip of FRP bar to concrete were studied systematically. Studies show that the failure mode is not the damage of the ribs or the shearing off of the ribs, but is shear failure between the screw thread and the core of the FRP bar, and the sands on the surface of the bar were grinded into powder. The descending branch of load-slip curve for the FRP bars is gentler than that for the steel bars. The bond strength of FRP bars is a little lower than that of steel bars, but higher than smooth FRP bar greatly. At last the FRP bar concrete specimen were modeled in ANSYS program and the simulation result is satisfactory, which proves the feasibility to model the behavior of bond-slip relationship between FRP bar and concrete accurately.


Sign in / Sign up

Export Citation Format

Share Document