Biophysical models of intrinsic homeostasis: Firing rates and beyond

2021 ◽  
Vol 70 ◽  
pp. 81-88
Author(s):  
Nelson Niemeyer ◽  
Jan-Hendrik Schleimer ◽  
Susanne Schreiber
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Eslam Mounier ◽  
Bassem Abdullah ◽  
Hani Mahdi ◽  
Seif Eldawlatly

AbstractThe Lateral Geniculate Nucleus (LGN) represents one of the major processing sites along the visual pathway. Despite its crucial role in processing visual information and its utility as one target for recently developed visual prostheses, it is much less studied compared to the retina and the visual cortex. In this paper, we introduce a deep learning encoder to predict LGN neuronal firing in response to different visual stimulation patterns. The encoder comprises a deep Convolutional Neural Network (CNN) that incorporates visual stimulus spatiotemporal representation in addition to LGN neuronal firing history to predict the response of LGN neurons. Extracellular activity was recorded in vivo using multi-electrode arrays from single units in the LGN in 12 anesthetized rats with a total neuronal population of 150 units. Neural activity was recorded in response to single-pixel, checkerboard and geometrical shapes visual stimulation patterns. Extracted firing rates and the corresponding stimulation patterns were used to train the model. The performance of the model was assessed using different testing data sets and different firing rate windows. An overall mean correlation coefficient between the actual and the predicted firing rates of 0.57 and 0.7 was achieved for the 10 ms and the 50 ms firing rate windows, respectively. Results demonstrate that the model is robust to variability in the spatiotemporal properties of the recorded neurons outperforming other examined models including the state-of-the-art Generalized Linear Model (GLM). The results indicate the potential of deep convolutional neural networks as viable models of LGN firing.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 662
Author(s):  
Joanna Jójka ◽  
Rafał Ślefarski

This paper details the experimental and numerical analysis of a combustion process for atmospheric swirl burners using methane with added ammonia as fuel. The research was carried out for lean methane–air mixtures, which were doped with ammonia up to 5% and preheated up to 473 K. A flow with internal recirculation was induced by burners with different outflow angles from swirling blades, 30° and 50°, where tested equivalence ratio was 0.71. The NO and CO distribution profiles on specified axial positions of the combustor and the overall emission levels at the combustor outlet were measured and compared to a modelled outcome. The highest values of the NO emissions were collected for 5% NH3 and 50° (1950 ppmv), while a reduction to 1585 ppmv was observed at 30°. The doubling of the firing rates from 15 kW up to 30 kW did not have any great influence on the overall emissions. The emission trend lines were not proportional to the raising share of the ammonia in the fuel. 3D numerical tests and a kinetic study with a reactor network showed that the NO outlet concentration for swirl flame depended on the recirculation ratio, residence time, wall temperature, and the mechanism used. Those parameters need to be carefully defined in order to get highly accurate NO predictions—both for 3D simulations and simplified reactor-based models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph K. E. Ortega ◽  
Revathi P. Mohan ◽  
Cindy M. Munoz ◽  
Shankar Lalitha Sridhar ◽  
Franck J. Vernerey

AbstractThe sporangiophores of Phycomyces blakesleeanus have been used as a model system to study sensory transduction, helical growth, and to establish global biophysical equations for expansive growth of walled cells. More recently, local statistical biophysical models of the cell wall are being constructed to better understand the molecular underpinnings of helical growth and its behavior during the many growth responses of the sporangiophores to sensory stimuli. Previous experimental and theoretical findings guide the development of these local models. Future development requires an investigation of explicit and implicit assumptions made in the prior research. Here, experiments are conducted to test three assumptions made in prior research, that (a) elongation rate, (b) rotation rate, and (c) helical growth steepness, R, of the sporangiophore remain constant during the phototropic response (bending toward unilateral light) and the avoidance response (bending away from solid barriers). The experimental results reveal that all three assumptions are incorrect for the phototropic response and probably incorrect for the avoidance response but the results are less conclusive. Generally, the experimental results indicate that the elongation and rotation rates increase during these responses, as does R, indicating that the helical growth steepness become flatter. The implications of these findings on prior research, the “fibril reorientation and slippage” hypothesis, global biophysical equations, and local statistical biophysical models are discussed.


1991 ◽  
Vol 261 (5) ◽  
pp. R1096-R1103 ◽  
Author(s):  
M. Shibata ◽  
C. M. Blatteis

This study was undertaken to determine whether the reported different courses of the febrile responses to the cytokines interleukin-1 beta (IL-1), interferon-alpha 2 (IFN), and tumor necrosis factor-alpha (TNF) might have neuroelectrophysiological correlates. The reactions of individual thermosensitive neurons in the preoptic area (POA) were evaluated by recording their extracellular single-unit firing rates (FR) in slices of guinea pig POA perfused with artificial cerebrospinal fluid (aCSF), human recombinant IL-1 (50-500 ng), IFN (1,000-8,000 U), and TNF (400-5,000 ng) (all doses per min/ml aCSF); thermosensitivity was assessed by FR responses to changes of perfusate temperature (32-42 degrees C). Overall, these cytokines depressed the FR of warm-sensitive units and excited those of cold-sensitive units, in agreement with expectations. However, the responses of individual neurons treated with two or all three cytokines were dissimilar: 61% of the units tested reacted differentially to two or three cytokines, 32% exhibited identical responses, and 7% had no response to any cytokine. These results support the possibility that IL-1, IFN, and TNF may affect not the same but rather distinct neurons functionally connected to common pyrogenic effectors. Thus they suggest that differential neuronal substrates may be utilized by each cytokine to exert its pyrogenic effect.


2018 ◽  
Vol 50 (5S) ◽  
pp. 429-430
Author(s):  
Phuong L. Ha ◽  
Garrett M. Hester ◽  
Ryan J. Colquhoun ◽  
Mitchel A. Magrini ◽  
Zachary K. Pope ◽  
...  

2015 ◽  
Vol 16 (7) ◽  
pp. 2005-2018 ◽  
Author(s):  
Kenneth J. Bagstad ◽  
James M. Reed ◽  
Darius J. Semmens ◽  
Benson C. Sherrouse ◽  
Austin Troy

2004 ◽  
Vol 91 (6) ◽  
pp. 2532-2540 ◽  
Author(s):  
Shin Nagayama ◽  
Yuji K. Takahashi ◽  
Yoshihiro Yoshihara ◽  
Kensaku Mori

Mitral and tufted cells in the mammalian olfactory bulb are principal neurons, each type having distinct projection pattern of their dendrites and axons. The morphological difference suggests that mitral and tufted cells are functionally distinct and may process different aspects of olfactory information. To examine this possibility, we recorded odorant-evoked spike responses from mitral and middle tufted cells in the aliphatic acid- and aldehyde-responsive cluster at the dorsomedial part of the rat olfactory bulb. Homologous series of aliphatic acids and aldehydes were used for odorant stimulation. In response to adequate odorants, mitral cells showed spike responses with relatively low firing rates, whereas middle tufted cells responded with higher firing rates. Examination of the molecular receptive range (MRR) indicated that most mitral cells exhibited a robust inhibitory MRR, whereas a majority of middle tufted cells showed no or only a weak inhibitory MRR. In addition, structurally different odorants that activated neighboring clusters inhibited the spike activity of mitral cells, whereas they caused no or only a weak inhibition in the middle tufted cells. Furthermore, responses of mitral cells to an adequate excitatory odorant were greatly inhibited by mixing the odorant with other odorants that activated neighboring glomeruli. In contrast, odorants that activated neighboring glomeruli did not significantly inhibit the responses of middle tufted cells to the adequate excitatory odorant. These results indicate a clear difference between mitral and middle tufted cells in the manner of decoding the glomerular odor maps.


Sign in / Sign up

Export Citation Format

Share Document