Experimental investigation on mineral and organic fibers effect on resilient modulus and dynamic creep of stone matrix asphalt and continuous graded mixtures in three temperature levels

2015 ◽  
Vol 95 ◽  
pp. 232-242 ◽  
Author(s):  
Mohammad Lavasani ◽  
Manouchehr Latifi Namin ◽  
Homa Fartash
Author(s):  
E. Ray Brown ◽  
John E. Haddock ◽  
Campbell Crawford

The use of stone matrix asphalt (SMA) has continued to increase in the United States since its initial application in 1991. This preference for SMA has been linked to its ability to withstand heavy traffic without rutting. The antirutting capability of SMA is normally accredited to the presence of a stone-on-stone aggregate skeleton in the mixture. However, the mortar in an SMA mixture is also important. The mortar is composed of fine aggregate, filler, asphalt cement, and a stabilizing additive. Work to characterize SMA mortars is detailed. For testing purposes, the mortar was broken into separate phases, total mortar and fine mortar. The fine mortar was tested using the Superior Performing Asphalt Pavements system (Superpave) binder tests. The total mortar was tested using the bending beam rheometer, resilient modulus, indirect tensile test, and Brookfield vis-cometer. The results indicate that the fine and total mortars are closely related. In addition, it was determined that at least some of the Superpave tests can be used to characterize SMA mortars. It is recommended that further testing be completed and specification criteria be established for the mortar.


Author(s):  
Alireza Ameli ◽  
Javad Maher ◽  
Amir Mosavi ◽  
Narjes Nabipour ◽  
Rezvan Babagoli ◽  
...  

The current study assessed the influence of Anti Stripping Agents (ASA), Ground Tire Rubber (GTR) and waste polyethylene terephthalate (PET) on performance behavior of binder and Stone Matrix Asphalt (SMA) mixtures. Through this paper, the 85/100 penetration grade bitumen was utilized as original bitumen. Also, three liquid ASA’s (ASA (A), ASA (B), ASA (C)) were used as a mixture modifier. For this purpose, softening point, penetration, rotational viscosity, Dynamic Shear Rheometer, Multi Stress Creep Recovery (MSCR) and Linear Amplitude Sweep (LAS) tests were implemented to investigate the rheological properties of modified bitumen. For evaluating the behavior of modified mixtures several tests such as; Resilient Modulus, Tensile Strength, dynamic creep, wheel track and four-point beam fatigue tests were implemented. Based on MSCR test results, utilization of mentioned polymers enhanced the elasticity of bitumens and therefore the permanent deformation resistance of binders increases. Also by the addition of PET percentage, the rutting resistance improves. Results indicated that utilization of ASAs, PET and Crumb Rubber (CR) enhance the Resilient Modulus (Mr), Indirect Tensile Strength (ITS), rutting resistance, fatigue life and Fracture Energy (FE) of asphalt mixtures. Also based on results, modification of binder by PET/CR with a ratio of 50%/50% and ASA (B) have the highest fatigue life which indicates that this mixture has highest resistance against fatigue cracking.


2019 ◽  
Vol 11 (2) ◽  
pp. 60-69
Author(s):  
Saad Issa Sarsam ◽  
Shahed Mahmood Khalil

Stone Matrix Asphalt Concrete (SMAC) is known as tough, stable, rut-resistant mixture. In this investigation, SMAC was prepared in the laboratory using gap graded aggregates, asphalt cement, mineral filler and coal fly ash as stabilizing agent. Specimens were prepared using static compaction to the target density based on asphalt content for each case. The prepared Specimens were subjected to the 1200 repeated compressive stresses at 25 ºC under various stress levels using the pneumatic repeated load system PRLS. Specimens were subjected to microcrack healing process by external heating for 120 minutes at 60 °C, then it practices another cycle of repeated compressive stresses. The resilient modulus, permanent deformation, and rutting resistance under three levels of stress have been assessed. It was concluded that the resilient modulus Mr increases by (66, 50 and 31) %, (36, 50 and 31) % and (62, 37 and 69) %, while the permanent deformation decreases by (25, 11.4 and 25) %, (19, 31.6 and 14.5) % and (14, 9 and 8.3) % after implementation of fly ash at (OAC-0.5, OAC and OAC+0.5) % binder content under (0.068, 0.138 and 0.206) MPa of repeated compressive stress respectively. The resilient modulus increased by (17.6, 15.3, 10.5) % , (42.8, 51, 37.5) % and (18.7, 25, 23.6) %  and the permanent deformation decline by (3.52, 31.66, 6.25) % under repeated compressive stresses of (0.068, 0.138, 0.206) MPa at (25 °C) after healing for mix with (4.6, 5.1, 5.6) % asphalt content  respectively when compared with mixtures before healing.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Alireza Ameli ◽  
Rezvan Babagoli

This research intends to evaluate the effects of the waste polyethylene terephthalate (PET), antistripping agents (ASA), and ground tire rubber (GTR) on the performance properties of the stone matrix asphalt (SMA) mix binder/water damage resistance. Liquid antistripping agents, added to 85/100 penetration grade binder to evaluate the ASA effects, were A (M500), B (EvothermM1), and C (LOF-6500). Tests conducted to study the modified bitumen’s rheological properties included softening point, penetration, rotational viscosity (RV), and dynamic shear rheometer (DSR), and tests performed in order to examine the moisture sensitivity of the modified mix were the Texas boiling and resilient modulus (MR), fracture energy (FE), and indirect tensile strength (ITS) ratio tests. Results showed that the MR, ITS, and FE of asphalt mixes modified with crumb rubber (CR), ASA, and PET were improved. Adding 50% PET, 50% CR, and ASA (B) led to the highest tensile strength, resilient modulus, and fracture energy ratios showing a perfect water susceptibility of the mentioned mix.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


2016 ◽  
Vol 700 ◽  
pp. 238-246 ◽  
Author(s):  
Dewi Sri Jayanti ◽  
Ramadhansyah Putra Jaya ◽  
Siti Aspalaili Mohamd Sharif ◽  
Norhidayah Abdul Hassan ◽  
Siti Nur Amiera Jeffry ◽  
...  

This study investigated the effects of adding various percentages of styrene–butadiene rubber (SBR) on the engineering properties and performance of asphaltic concrete. SBR was added into the mixture at 0%, 1%, 3%, and 5% on a mass-to-mass basis. Conventional bitumen used in this study was 80/100 PEN. The performances of SBR on the asphalt mixture properties were evaluated based on Marshall Stability, abrasion loss, resilient modulus, and dynamic creep test. Results indicated an improvement in the engineering properties and performance with the addition of SBR content. For instance, stability increased by 18.8% as the SBR content increased from 0% to 5%. Dynamic creep stiffness also increased by 46.2%. Similarly, the resilient modulus was also found to increase by approximately 84.6%.


Sign in / Sign up

Export Citation Format

Share Document