Investigating the effects of recycled PET particles, shredded recycled steel fibers and Metakaolin powder on the properties of RCCP

2019 ◽  
Vol 224 ◽  
pp. 173-187 ◽  
Author(s):  
Reza Noroozi ◽  
Gholamali Shafabakhsh ◽  
Ali Kheyroddin ◽  
Abolfazl Mohammadzadeh Moghaddam
2019 ◽  
Vol 24 ◽  
pp. 8-13 ◽  
Author(s):  
Hamza Bensaci ◽  
Belkacem Menadi ◽  
Said Kenai

This paper reports on an experimental investigation using either rubber aggregates or steel fibres recycled from waste tires in the production of self-consolidating concrete composite (SCCC). Ten mixes are designed, one of them is the reference concrete. The natural aggregates are substituted by rubber particles by volume at 5, 10, 15, 20 and 30%. Recycled steel fibres are separately added to SCC mixes at volume fraction of 0.5, 0.8, 1 and 1.5%. The tested rheological properties of SCCC are slump flow diameter, T500 slump flow time, V-funnel flow time, L-box ratio, and the segregation resistance test. The compressive strength, the flexural strength, and total shrinkage are also measured on the 28 days. The experimental results show that the addition of recycled steel fibre is favorable for the SCC by means of increasing the flexural strength and reducing the shrinkage and the risk of cracking. Keywords: Self-consolidating concrete composite; Waste tires; Rubber; Steel fibers; Rheology, Strength


2021 ◽  
Vol 11 (4) ◽  
pp. 305-315
Author(s):  
Ziaaddin Zamanzadeh ◽  
Farzin Hosseinzadeh ◽  
Mehdi Bashiri

The effectiveness of a strengthening technique devised for the concrete beams subjected to bending is presented in this study, where recycled-steel fiber-reinforced mortar (RSFRM) panels are used as an eco-friendly replacement for ordinary steel fibers. Different mix designs for RSFRM are first investigated experimentally by testing 160 × 400 × 400 mm3 notched beam-like specimens in 3-point bending, while 100 × 100 × 100 mm3 cubes are tested in compression, to optimize the mix design. Finite element (FE) analyses are carried out on strengthened and non-strengthened beams to investigate the effectiveness of the proposed strengthening technique based on RSFRM panels. Starting from the tests on notched beams, an inverse FE analysis is used to optimize the RSFRM’s parameters to be implemented into the numerical model. The results show that applying RSFRM panels not only markedly increases the load-bearing capacity of the beams (up to 3.19 times with 3% of fibers by volume), but also changes their fracture mechanism from brittle to ductile fracture.


2020 ◽  
Vol 30 (2) ◽  
pp. 67-79
Author(s):  
Julián Carrillo ◽  
Carlos Díaz

Millions of post-consumer tires are not adequately disposed of each year, and thus, are producing an enormous environmental problem in the world. This environmental impact may be reduced when assessing this material as an alternative reinforcement for concrete. It is widely known that the toughness of steel fiber-reinforced concrete is suitably assessed by energy absorption tests on slabs. The purpose of this paper is to show and discuss the results of a research aimed at assessing the mechanical response of concrete slabs reinforced with recycled steel fibers from post-consumer tires in Bogotá, Colombia. The testing program of the study comprised 31 axial compression tests on cylinders, and 15 bending tests on concrete slabs reinforced with nominal dosages of 15, 30, and 60 kg/m3 of industrial steel fibers or recycled fibers obtained from post-consumer tires. Based on the measured response, preliminary design equations are proposed to estimate the mechanical properties of concrete reinforced with recycled steel fibers.


2014 ◽  
Vol 629-630 ◽  
pp. 104-111 ◽  
Author(s):  
Gai Fei Peng ◽  
Xu Jing Niu ◽  
Qian Qian Long

This paper presents an experimental investigation on mechanical properties (including compressive strength, tensile splitting strength and fracture energy) of ultra-high performance concrete (UHPC) with recycled steel fiber, compared with none fiber and industrial steel fiber reinforced UHPC. Moreover, the microscopic observation of fracture energy was carried out. All specimens were prepared at 0.18 water /binder (W/B) ratio and the dosage of steel fiber was controlled at 60 kg/m3. The results indicate that recycled steel fiber has a significant effect on enhancing strength and toughness of UHPC. And owing to the crimped shape, higher tensile strength (1800-2000 MPa) and appropriate diameter (1 mm) of recycled steel fiber, the steel fibers of UHPRSFRC will not immediately be pulled off and necking phenomenon is distinct.


2020 ◽  
Vol 23 (11) ◽  
pp. 2458-2470
Author(s):  
Ghasem Pachideh ◽  
Majid Gholhaki

This article aims to study the effects of adding steel fibers and galvanized recycled spring on mechanical properties and crack development in the fine-grained concrete exposed to the acidic environment containing magnesium sulfate. To this end, specimens containing 0.3% and 0.6% of steel fibers and springs, respectively, by concrete volume, were built in normal temperature using 10 cm × 20 cm standard steel formworks so as to conduct the compressive and tensile strength tests. All specimens were cured in 28 days exposed to the environment containing 0%, 5%, and 10% of magnesium sulfate. Based on the results, addition of steel fibers and recycled spring improves the compressive and tensile strength by 50% and 60%, respectively. Moreover, the specimens containing recycled spring better withstood against the acidic environments in comparison with the specimens including steel fibers. In general, it was found that due to the negligible difference between the strength of the specimens, the application of metal-recycled spring in the fine-grained concrete is technically and economically justifiable.


2018 ◽  
Vol 162 ◽  
pp. 04010
Author(s):  
Muyasser Jomaa’h ◽  
Ammar Khazaal ◽  
Sinan Ahmed

The main objective of the research is to study the preparation of one way slabs of ordinary concrete, and then to prepare concrete slabs by replacing the main reinforcing steel with two kinds of steel fibers (ordinary steel fibers and recycled steel fibers) by fraction volumes of 0.125, 0.250, and 0.375%. Also, study the mechanical properties of the mixtures as a ompressive strength, indirect tensile strength, and flexural strength. Concrete slabs of these mixtures have been prepared with specific geometrical dimensions700 * 300 * 70 mm, exposed to line load, to study the bending moment and maximum failure load of these slabs. A concrete mixture was produced after proportionment based on the ACI and casting six cubes tested at the ages of 7 and 28 days where the strength requirements for design were achieved. The main mixtures of research were produced, three cubes for compressive strength testing, twenty one cylinders for indirect tensile strength testing, and twenty one prisms for modulus of rupture testing. Also sixteen concrete slabs were prepared, two of them were reference slabs without reinforcing steel, the other two with main reinforcing steel only, six of them replaced by the main reinforcing steel with ordinary steel fibers, and the last six replacing the main reinforcing steel with recycled steel fibers. The results showed that both the failure load and the resultant deflection in concrete slabs decreased by (20.09%, 51.91%) for maximum load and by (35.18%, 81.48%) compared to the reference slabs when replacing the main reinforcing steel with steel fiber, also by (25.72%, 38.29%) to failure load and (38.88%, 79.63%) for the deflection compared to the reference slabs when replacing the main reinforcing steel with recycled steel fibers. The best value for maximum load and deflection could be obtained from this study was at 0.125% replacement ratio of the main reinforcing steel with recycled steel fibers, the highest value of ductility was 3.77 at the replacement ratio of 0.250% of the main reinforcing steel with the ordinary steel fibers, also the highest hardness value was 11.67 kN / mm with the replacement ratio of 0.125% of the main reinforcing steel with recycled steel fibers and increased by 61.85% than the hardness of the reference slabs.


Sign in / Sign up

Export Citation Format

Share Document