scholarly journals Optimisation of rheological parameters, induced bleeding, permeability and mechanical properties of supersulfated cement grouts

2020 ◽  
Vol 262 ◽  
pp. 120078 ◽  
Author(s):  
M. Sonebi ◽  
A. Abdalqader ◽  
T. Fayyad ◽  
A. Perrot ◽  
Y. Bai
2014 ◽  
Vol 501-504 ◽  
pp. 419-425
Author(s):  
Qing Xu ◽  
Jiang Da He ◽  
Hong Qiang Xie ◽  
Ming Li Xiao ◽  
Jian Feng Liu

The mechanical properties of intact rock and rock containing structural plane are very different. From the diversion tunnel of Jinping deep rock site to retrieve the complete block of marble, after a high confining pressure triaxial compression simulation tectonic movements, the formation of structural plane, it represents the mechanical properties of the original rock. On the surface of the marble structure containing triaxial compression creep tests, the results showed: at low confining pressure, the weak marble surface as micro-damage accumulation, the emergence of non-uniform partial destruction, while at high confining pressure, creep curve better continuity and integrity; different confining pressures, marble initial rheology and stability both appear rheological phase, accelerated phase rheological obvious; different confining pressures, the same stage of the axial stress steady flow rate compared with the confining pressure increases, the axial steady state flow rate becomes smaller; marble under test showed the rheological properties, the use of Nishihara model can better demonstrate the rheological properties and determine the rheological parameters for other practical engineering reference.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 236-253
Author(s):  
Abdelhakim Benhamouda ◽  
João Castro-Gomes ◽  
Luiz Pereira-de-Oliveira

Alkali-activated materials have the potential to replace Portland cement in certain applications. To better understand these binders’ properties, it is relevant to study their rheological behaviour at early ages, like in the case of Portland cement paste. There are already many studies on the rheological behaviour of these materials in the available literature, using fly ash, metakaolin, and ground granulated blast furnace slag as precursors. However, this study discusses the rheological behaviour, mechanical properties, and porosity of ternary alkali-activated binders based on mining mud waste, waste glass, and metakaolin. The precursor consisted of a volume mix of 70% of tungsten mining waste mud, 15% glass waste, and 15% of metakaolin. The activator was a combination of sodium hydroxide and sodium silicate solution. Five activator/precursor (A/P) ratios (0.37, 0.38, 0.39, 0.40, and 0.4) were studied. The result showed that the activator/precursor ratio affects the rheology of paste and their rheological behaviour fit the Bingham model. The relative yield stress (g) and plastic viscosity (h) increased inversely with the A/P ratio, while the workability increased proportionally. Furthermore, some empirical models are proposed to describe the characteristic of yield stress: plastic viscosity and spread diameter versus the A/P ratio and time with a correlation between the rheological parameters and the spread diameter. The increase in A/P ratio has also followed a decrease in compressive strength in all tested samples for all the ages. As expected, an increase of the porosity accompanied the increase of the A/P ratio.


2021 ◽  
Vol 1031 ◽  
pp. 7-16
Author(s):  
Ilya Vasilyev ◽  
Vladimir Ananiev ◽  
Yulia Sultanova ◽  
Valentina Kolpakova

The purpose of this work is to improve the production technology of biodegradable hybrid compositions based on low-density polyethylene with thermoplastic starch and new plasticizer–distilled monoglyceride and determination of the composition effect on mechanical properties. Starch was plasticized with a mixture of glycerol and distilled monoglycerides, instead of the known sorbitol. This article describes methods for producing biodegradable hybrid composite films based on polyethylene and thermoplastic starches (corn, pea and rice) with a mass ratio of components, respectively, 40:60÷60:40 and their mechanical properties. Properties and structure of composite films are studied using test methods, rheological parameters, optical microscopy, and differential scanning calorimetry. The advantages of using monoglycerides as a plasticizer in thermoplastic starch/ polyethylene compositions have been demonstrated. Composites obtained using distilled monoglycerides and thermoplastic corn, pea and rice starch have been characterized by 62-81% higher values of critical stress and 62-93% elongation at rupture, compared with BHC containing sorbitol. The thickness of biodegradable hybrid composite films with monoglycerides is 55-86% less than that of films containing sorbitol in composition of thermoplastic starch. Higher elongation values at rupture and lower film thickness will ensure more effective destruction in environment and more cost-efficient use in packaging.


OENO One ◽  
1997 ◽  
Vol 31 (3) ◽  
pp. 127 ◽  
Author(s):  
Jean-Pierre Robin ◽  
Philippe Abbal ◽  
Jean-Michel Salmon

<p style="text-align: justify;">Mechanical properties of Shiraz and Gamay grape berries were studied in relation with their maturity state using the Penelaup<sup>TM</sup> rheometer. The analysis of the constrains registered during berry crushing with the flat tool of the device, up to the pellicular tearing, allowed the definition of different rheological parameters and the characterisation of mechanical behaviour of grape and its evolution with the degree of ripening. The analysis of the deformability curves shows, independently of the cultivar, that berry behaviour is not elastical except for some berries at the beginning and at the end of the ripening. This behaviour can be characterised by two indexes expressing the curvature sense of deformability curves, the curvature degree in a way reflecting the turgescence state of the grape. Berry firmness was also considered in two different ways: the initial firmness which represents the elasticity coefficient of the fruit at the beginning of the deformation, and the bursting firmness which can be considered as the pellicular elasticity coefficient. Others parameters, as the pellicular strength which can be expressed from the value of the displacement at berry bursting and the energy used for the deformation were also defined. The evolution of these different parameters during ripening confirms that berry softening at the véraison time depends on the cultivar and on environmental conditions as the vintage. The analysis of the evolutions also indicates that pellicular strength is maximum at this crucial period of berry development.</p>


Author(s):  
Mikhail F. Butman ◽  
Natalya V. Filatova ◽  
Galina P. Kozlovskaya

Here are discussed some results to use oxyethylidenediphosphonic acid (OEDPA) and various additives as a deflocculant composition for controlling the rheological properties of a ceramic suspension. According to the results of determining thixotropy, it was found that a complex thinner based on soda and OEDPA is the most effective. It is desirable to replace a portion of the soda with liquid glass. By the full factorial experiment method, it was established the optimal composition of the components of the complex thinner. The proposed thinner is highly effective in a wide range of OEDPA, soda, and liquid glass concentrations. The resulting suspensions have stable, high structural–mechanical properties. A mathematical model describing the effect of the composition of the thinner on the viscosity and thixotropy of the suspension is presented. The effect of the diluent on the mechanical properties of the molded dried and fired samples was determined. The addition of OEDPA to the thinner significantly lowers the rheological parameters and the rheological properties of the suspensions approach the rheological properties of Newtonian systems. It was found that OEDPA lowers the mass buildup rate, which can be increased by lowering the moisture content in the suspension, which makes it possible to increase the post-casting and -drying density of the samples. The introduction of this additive leads to an increase in the hydrate shell around the clayey particle and an increase in the stability of the suspension, but the increase in the ζ - potential in comparison with the production additive is very small. The mechanism of action of a complex additive is proposed, including ion-exchange, complexation and chemisorption. An increase in the strength and density of dry and calcinated clay samples as well as a decrease in the shrinkage and porosity are observed. The complex additive makes it possible to optimize the technology at the stages of casting slip and to decrease the number of parts rejected during molding, drying and firing.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7592
Author(s):  
Hengrui Liu ◽  
Zhenghong Tian ◽  
Haoyue Fan

In this paper, the effect of a newly developed superfine basalt powder (SB) on the fresh and mechanical properties of cement paste was studied. The concept of water film thickness (WFT) was cited to explain the influence of SB on fresh and mechanical properties and related mathematical model formulas were established. In addition, the relationship between the fresh properties and mechanical properties of paste was also explored. The results indicated that SB can improve the segregation resistance and cohesiveness. The maximum improvement rate relative to the control cement paste was 75.4% and 50.4%, respectively. The 5% SB and 10% SB reduced the fluidity in the range of 4.1–68.7% but increased the early and late compressive strength in the range of 1.2–25.7% compared to control cement paste under different water/cementitious materials (W/CM) ratios. However, the influence of 20% SB on fluidity and compressive strength was opposite to the above behavior, and the increase rate and decrease rate were 1.8–11.8% and 1.1–13.9% respectively. The WFT was the most important factor that determined the compressive strength, rheological parameters, and flow parameters of paste containing SB, while the substitute content of SB and WFT together determined the bleeding rate and cohesiveness. Among them, the correlation between bleeding rate and WFT increased with time. The empirical mathematical models between WFT, fresh properties, and compressive strength were established and verified by other mineral admixtures, which were successfully extended and applied to the entire field of cement-based materials


Sign in / Sign up

Export Citation Format

Share Document