Prefabricated Structures Surface Marble Rheological Tests and Constitutive Model Analysis

2014 ◽  
Vol 501-504 ◽  
pp. 419-425
Author(s):  
Qing Xu ◽  
Jiang Da He ◽  
Hong Qiang Xie ◽  
Ming Li Xiao ◽  
Jian Feng Liu

The mechanical properties of intact rock and rock containing structural plane are very different. From the diversion tunnel of Jinping deep rock site to retrieve the complete block of marble, after a high confining pressure triaxial compression simulation tectonic movements, the formation of structural plane, it represents the mechanical properties of the original rock. On the surface of the marble structure containing triaxial compression creep tests, the results showed: at low confining pressure, the weak marble surface as micro-damage accumulation, the emergence of non-uniform partial destruction, while at high confining pressure, creep curve better continuity and integrity; different confining pressures, marble initial rheology and stability both appear rheological phase, accelerated phase rheological obvious; different confining pressures, the same stage of the axial stress steady flow rate compared with the confining pressure increases, the axial steady state flow rate becomes smaller; marble under test showed the rheological properties, the use of Nishihara model can better demonstrate the rheological properties and determine the rheological parameters for other practical engineering reference.

Author(s):  
Anatolii A. KISLITSYN ◽  
Nikita V. Lipatov

This article features experiments on triaxial compression of low-permeable dolomite samples with different confining pressures (2-20 MPa), different pore fluids (dry air, water, CO2), and different temperatures (25-150 °C). The authors have studied the effect of confining pressure, pore fluid and temperature on the strength properties of the studied samples. The results show an increase in the strength with grwoing confining pressure. When the confining pressure increases from 2 to 20 MPa, the compressive strength increases from 86 to 370 MPa. Temperature has a significant effect on rock strength under low confining pressure conditions. With the increasing confining pressure reaching 15 MPa, increasing temperature has little effect on the strength of dolomite samples. Under an effective confining pressure of 5 MPa, the temperature weakening occurs on the dolomite specimens when the temperature exceeds 90 °C. During compression, liquid diffusion occurs in the specimens. Higher water viscosity can cause a temporary decrease in effective confining pressure, which can increase the strength of the rock. More prominent fractures are observed in the samples, and more fluid is injected under CO2 injection conditions, which may be useful for increasing the permeability of the geothermal reservoir. Two groups of experiments have been performed on the samples in this study: the first group of experiments investigated the effect of confining pressure on the fracture stress of core samples, without pore fluid injection; the second group of experiments investigated the effect of water or CO2 and temperature on the mechanical properties of core samples.


2019 ◽  
Vol 9 (16) ◽  
pp. 3234 ◽  
Author(s):  
Jinquan Xing ◽  
Cheng Zhao ◽  
Songbo Yu ◽  
Hiroshi Matsuda ◽  
Chuangchuang Ma

In order to study the mechanical characteristics and cracking behavior of jointed rock mass under hydro-mechanical coupling, a series of uniaxial compression tests and triaxial compression tests were carried out on cylinder gypsum specimens with a single pre-existing flaw. Under different confining pressures, water pressure was injected on the pre-existing flaw surface through a water injection channel. The geometrical morphology and tensile or shear properties of the cracks were determined by X-ray computed tomography (CT) and scanning electron microscope (SEM). Based on the macro and micro observation, nine types of cracks that caused the specimen failure are summarized. The results of mechanical properties and crack behavior showed that the confining pressure inhibited the tensile cracks, and shear failure occurred under high confining pressure. The water pressure facilitated the initiation and extension of tensile crack, which made the specimens prone to tensile failure. However, under the condition of high confining pressure and low water pressure, the lubrication effect had a significant effect on the failure pattern, under which the specimens were prone to shear failure. This experimental research on mechanical properties and cracking behavior under hydro-mechanical coupling is expected to increase its fundamental understanding.


2012 ◽  
Vol 594-597 ◽  
pp. 218-221
Author(s):  
Yu Wang ◽  
Feng Liu

Using the RMT-150C rock mechanics test system, the instantaneous triaxial compression tests for muddy siltstone were carried out under different confining pressures, and the instantaneous mechanical properties of soft rock were obtained. The results show that the strength parameters of sample have a positive linear relation with the confining pressure, and the sensitivity of peak strength on the confining pressure is higher than that of residual strength. The elastic and deformation modulus of sample linearly increase with the confining pressure going up, and the elastic modulus is more sensitive to the confining pressure. The soft rock sample shows typical ductility failure characteristic, while the damage characteristic is mainly shear failure and the shear failure angle linearly decreases with the confining pressure going up.


2021 ◽  
pp. 105678952199119
Author(s):  
Kai Yang ◽  
Qixiang Yan ◽  
Chuan Zhang ◽  
Wang Wu ◽  
Fei Wan

To explore the mechanical properties and damage evolution characteristics of carbonaceous shale with different confining pressures and water-bearing conditions, triaxial compression tests accompanied by simultaneous acoustic emission (AE) monitoring were conducted on carbonaceous shale rock specimens. The AE characteristics of carbonaceous shale were investigated, a damage assessment method based on Shannon entropy of AE was further proposed. The results suggest that the mechanical properties of carbonaceous shale intensify with increasing confining pressure and degrade with increasing water content. Moisture in rocks does not only weaken the cohesion but also reduce the internal friction angle of carbonaceous shale. It is observed that AE activities mainly occur in the post-peak stage and the strong AE activities of saturated carbonaceous shale specimens appear at a lower normalized stress level than that of natural-state specimens. The maximum AE counts and AE energy increase with water content while decrease with confining pressure. Both confining pressure and water content induce changes in the proportions of AE dominant frequency bands, but the changes caused by confining pressure are more significant than those caused by water content. The results also indicate that AE entropy can serve as an applicable index for rock damage assessment. The damage evolution process of carbonaceous shale can be divided into two main stages, including the stable damage development stage and the damage acceleration stage. The damage variable increases slowly accompanied by a few AE activities at the first stage, which is followed by a rapid growth along with intense acoustic emission activities at the damage acceleration stage. Moreover, there is a sharp rise in the damage evolution curve for the natural-state specimen at the damage acceleration stage, while the damage variable develops slowly for the saturated-state specimen.


Author(s):  
F Li ◽  
V M Puri

A medium pressure (<21 MPa) flexible boundary cubical triaxial tester was designed to measure the true three-dimensional response of powders. In this study, compression behaviour and strength of a microcrystalline cellulose powder (Avicel® PH102), a spray-dried alumina powder (A16SG), and a fluid-bed-granulated silicon nitride based powder (KY3500) were measured. To characterize the mechanical behaviour, three types of triaxial stress paths, that is, the hydrostatic triaxial compression (HTC), the conventional triaxial compression (CTC), and the constant mean pressure triaxial compression (CMPTC) tests were performed. The HTC test measured the volumetric response of the test powders under isostatic pressure from 0 to 13.79MPa, during which the three powders underwent a maximum volumetric strain of 40.8 per cent for Avicel® PH102, 30.5 per cent for A16SG, and 33.0 per cent for KY3500. The bulk modulus values increased 6.4-fold from 57 to 367MPa for Avicel® PH102, 3.7-fold from 174 to 637 MPa for A16SG, and 8.1-fold from 74 to 597MPa for KY3500, when the isotropic stress increased from 0.69 to 13.79 MPa. The CTC and CMPTC tests measured the shear response of the three powders. From 0.035 to 3.45MPa confining pressure, the shear modulus increased 28.7-fold from 1.6 to 45.9MPa for Avicel® PH102, 35-fold from 1.7 to 60.5MPa for A16SG, and 28.5-fold from 1.5 to 42.8MPa for KY3500. In addition, the failure stresses of the three powders increased from 0.129 to 4.41 MPa for Avicel® PH102, 0.082 to 3.62 MPa for A16SG, and 0.090 to 4.66MPa for KY3500, respectively, when consolidation pressure increased from 0.035 to 3.45MPa. In addition, the shear modulus and failure stress values determined from the CTC test at 2.07, 2.76, and 3.45MPa confining pressures are consistently greater than those from the CMPTC test at the same constant mean pressures. This observation demonstrates the influence of stress paths on material properties. The CTT is a useful tool for characterizing the three-dimensional response of powders and powder mixtures.


2021 ◽  
Author(s):  
Meng Meng ◽  
Luke Frash ◽  
James Carey ◽  
Wenfeng Li ◽  
Nathan Welch ◽  
...  

Abstract Accurate characterization of oilwell cement mechanical properties is a prerequisite for maintaining long-term wellbore integrity. The drawback of the most widely used technique is unable to measure the mechanical property under in situ curing environment. We developed a high pressure and high temperature vessel that can hydrate cement under downhole conditions and directly measure its elastic modulus and Poisson's ratio at any interested time point without cooling or depressurization. The equipment has been validated by using water and a reasonable bulk modulus of 2.37 GPa was captured. Neat Class G cement was hydrated in this equipment for seven days under axial stress of 40 MPa, and an in situ measurement in the elastic range shows elastic modulus of 37.3 GPa and Poisson's ratio of 0.15. After that, the specimen was taken out from the vessel, and setted up in the triaxial compression platform. Under a similar confining pressure condition, elastic modulus was 23.6 GPa and Possion's ratio was 0.26. We also measured the properties of cement with the same batch of the slurry but cured under ambient conditions. The elastic modulus was 1.63 GPa, and Poisson's ratio was 0.085. Therefore, we found that the curing condition is significant to cement mechanical property, and the traditional cooling or depressurization method could provide mechanical properties that were quite different (50% difference) from the in situ measurement.


2017 ◽  
Vol 27 (8) ◽  
pp. 1131-1155 ◽  
Author(s):  
Zhiwei Zhou ◽  
Wei Ma ◽  
Shujuan Zhang ◽  
Cong Cai ◽  
Yanhu Mu ◽  
...  

A series of multistage triaxial compression, creep, and stress relaxation tests were conducted on frozen loess at the temperature of −6℃ in order to study the damage evolution and recrystallization enhancement of mechanical properties during deformation process. The effect of strain rate, confining pressure, and hydrostatic stress history in the degradation laws of mechanical properties is investigated further. The strain rate has a significant influence on the stress–strain curve which dominates the evolution trend of mechanical properties. The mechanical behaviors (strength, stiffness, and viscosity) of frozen loess all exhibit evident response for the consolidation and pressure melting phenomenon caused by the confining pressure. The multistage loading tests under different hydrostatic stresses are capable of differentiating the development characteristics of mechanical properties during axial loading and hydrostatic compression process, respectively. The testing results indicated that the recrystallization of the ice particle in the frozen soils is an important microscopic factor for enhancement behaviors of mechanical parameters during the deformation process. This strengthening degree of mechanical properties is determined by temperature, duration time, deformation degree, and stress state during the recrystallization process. The phase transformation led by pressure melting and ice recrystallization is a nonnegligible changing pattern of frozen soils microstructure, which has apparent role in the damage evolution of mechanical properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Linna Sun ◽  
Liming Zhang ◽  
Yu Cong ◽  
Yaduo Song ◽  
Keqiang He

AbstractFailure tests on marble during unloading confining-pressure under constant axial stress and simulations with the particle flow code were performed. The influence mechanism of the unloading rate of the confining pressure, initial unloading stress, and confining pressure on the failure characteristics of, and crack propagation in, marble was studied. By using the trial-and-error method, the conversion relationship between the unloading rates of confining pressures in laboratory tests and numerical simulations was ascertained. Micro-cracks formed in the unloading process of confining pressure are dominated by tension cracks, accompanied by shear cracks. The propagation of shear cracks lags that of tension cracks. As the confining pressure is increased, more cracks occur upon failure of the samples. The proportion of shear cracks increases while that of tension cracks decreases. The failure mode of samples undergoes a transition from shear-dominated failure to conjugated shear failure.


2020 ◽  
Vol 114 (2) ◽  
pp. 105-118
Author(s):  
Roman Schuster ◽  
Gerlinde Habler ◽  
Erhard Schafler ◽  
Rainer Abart

AbstractPolycrystalline calcite was deformed to high strain at room-temperature and confining pressures of 1–4 GPa using high-pressure torsion. The high confining pressure suppresses brittle failure and allows for shear strains >100. The post-deformation microstructures show inter- and intragranular cataclastic deformation and a high density of mechanical e$$ \left\{01\overline{1}8\right\} $$011¯8 twins and deformation lamellae in highly strained porphyroclasts. The morphologies of the twins resemble twin morphologies that are typically associated with substantially higher deformation temperatures. Porphyroclasts oriented unfavorably for twinning frequently exhibit two types of deformation lamellae with characteristic crystallographic orientation relationships associated with calcite twins. The misorientation of the first deformation lamella type with respect to the host corresponds to the combination of one r$$ \left\{10\overline{1}4\right\} $$101¯4 twin operation and one specific f$$ \left\{01\overline{1}2\right\} $$011¯2 or e$$ \left\{01\overline{1}8\right\} $$011¯8 twin operation. Boundary sections of this lamella type often split into two separated segments, where one segment corresponds to an incoherent r$$ \left\{10\overline{1}4\right\} $$101¯4 twin boundary and the other to an f$$ \left\{01\overline{1}2\right\} $$011¯2 or e$$ \left\{01\overline{1}8\right\} $$011¯8 twin boundary. The misorientation of the second type of deformation lamellae corresponds to the combination of specific r$$ \left\{10\overline{1}4\right\} $$101¯4 and f$$ \left\{01\overline{1}2\right\} $$011¯2 twin operations. The boundary segments of this lamella type may also split into the constituent twin boundaries. Our results show that brittle failure can effectively be suppressed during room-temperature deformation of calcite to high strains if confining pressures in the GPa range are applied. At these conditions, the combination of successive twin operations produces hitherto unknown deformation lamellae.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Fu Yi ◽  
Changbo Du

To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.


Sign in / Sign up

Export Citation Format

Share Document