Study on UV aging resistance of nano-TiO2/montmorillonite/styrene-butadiene rubber composite modified asphalt based on rheological and microscopic properties

2021 ◽  
Vol 301 ◽  
pp. 124108
Author(s):  
Meijie Liao ◽  
Zhaohui Liu ◽  
Yingli Gao ◽  
Li Liu ◽  
Shuncheng Xiang
Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4045
Author(s):  
Xiaohui Guo ◽  
Yuanfang Luo ◽  
Yongjun Chen ◽  
Lijuan Chen ◽  
Demin Jia

Antioxidants are normally utilized to extend the service life of polymers due to the strong reducibility of the phenolic hydroxyl group of the hindered phenol structure. Inspired by this characteristic, we have introduced green tea polyphenol (TP) supported on a silica surface containing considerable phenolic hydroxyl groups to obtain a novel biomass anti-aging filler (BAF, denoted as silica-s-TP) to reinforce and improve the anti-aging property of rubber composites. The applying of silica-s-TP to enhance the thermal-oxidative stability and ultraviolet light (UV) aging resistance of styrene-butadiene rubber (SBR) was evaluated. The hybrid biomass anti-aging filler could not only uniformly disperse in the rubber matrix, giving rise to the excellent mechanical properties, but also enhance the properties of thermal-oxidative stability and UV aging resistance with the increasing silica-s-TP content of SBR distinctly. This study provides a mild and environmentally friendly strategy to prepare the functional biomass filler, which could be applied as not only a reinforcement filler but also an anti-aging additive in “green rubber”.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5836
Author(s):  
Peifeng Cheng ◽  
Yiming Li ◽  
Zhanming Zhang

To improve the thermal-aging stability and rheological performance of styrene–butadiene rubber (SBR)-modified asphalt, phenolic resin (PF) was introduced in the process of preparing SBR-modified asphalt by melt blending. The effect of PF and SBR on the high and low-temperature rheological performance of the asphalt binder before and after aging was evaluated by a temperature and frequency sweep using a dynamic shear rheometer (DSR). Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and fluorescence microscopy (FM) were used to further investigate the effect of PF and SBR on the thermal stability and morphological characteristics of the asphalt binder. The results showed that the addition of PF can enhance the high-temperature deformation resistance and short-term aging resistance of SBR-modified asphalt. Moreover, PF and SBR form an embedded network structure within the asphalt binder and alleviate the deterioration of the polymer during the aging process. Compared with SBR-modified asphalt, the chemical system of composite-modified asphalt is more stable, and it can remain stable with an aging time of less than 5 h.


2016 ◽  
Vol 124-125 ◽  
pp. 167-174 ◽  
Author(s):  
Yinmin Zhang ◽  
Qinfu Liu ◽  
Shilong Zhang ◽  
Yude Zhang ◽  
Yongfeng Zhang ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 641 ◽  
Author(s):  
Zhibin Ren ◽  
Yongqiang Zhu ◽  
Qi Wu ◽  
Minye Zhu ◽  
Feng Guo ◽  
...  

The storage stability concern, caused by phase separation for the density difference between polymers and asphalt fractions, has limited the widespread application of polymer modified asphalt (PMA). Therefore, this study aims to improve the storage concern of PMA by incorporating nano-montmorillonite. To this end, different nano-montmorillonites were incorporated to three PMAs modified with three typical asphalt modifiers, i.e., crumb rubber (CRM), styrene–butadiene-rubber (SBR) and styrene–butadiene-styrene (SBS). A series of laboratory tests were performed to evaluate the storage stability and rheological properties of PMA binders with nano-montmorillonite. As a consequence, the incorporation of nano-montmorillonite exhibited a remarkable effect on enhancing the storage stability of the CRM modified binder, but limited positive effects for the SBR and SBS modified binders. The layered nano-montmorillonite transformed to intercalated or exfoliated structures after interaction with asphalt fractions, providing superior storage stability. Among selected nano-montmorillonites, the pure montmorillonite with Hydroxyl organic ammonium performed the best on enhancing storage stability of PMA. This paper suggests that nano-montmorillonite is a promising modifier to alleviate the storage stability concern for asphalt with polymer modifiers.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 352 ◽  
Author(s):  
Jianhua Yang ◽  
Zhengqi Zhang ◽  
Ying Fang ◽  
Yaofei Luo

Neat asphalt emulsions have poor physicochemical properties. In order to endow neat asphalt emulsions with excellent physicochemical properties and broaden their application as pavement, this study adopted the composite modification method using waterborne epoxy resin (WER) and styrene–butadiene rubber (SBR) latex. Firstly, a waterborne-epoxy–SBR composite modified asphalt emulsions (WESAEs) with different amounts of WER were prepared, and the storage stability, workability, and residual properties were characterized with a series of tests. Then, the performance of the WESAEs was comprehensively evaluated by multiobjective gray target decision-making method, through which the optimal amount of WER in WESAE was determined. Lastly, the modification mechanism of WER was revealed by Fourier-transform infrared spectroscopy test. The results show that the incorporation of WER improves the high-temperature performance, thermal stability, rheological property, and adhesion of the SBR modified asphalt emulsion (SBRAE) residues. However, an excessive amount of WER will adversely affect the storage stability, particle distribution uniformity, and workability of the WESAE binder. The WESAE with 3% WER showed the best comprehensive performance; thus, the optimal amount of WER is 3% of the weight of the WESAE. Additionally, modification of the SBRAE by WER is a physical blending process, meaning no chemical reaction occurs in the blending process.


Sign in / Sign up

Export Citation Format

Share Document