Investigation on anti-skid performance of asphalt mixture composed of calcined bauxite and limestone aggregate

2021 ◽  
Vol 306 ◽  
pp. 124932
Author(s):  
Rui Xiong ◽  
Youjie Zong ◽  
Hongli Lv ◽  
Yanping Sheng ◽  
Bowen Guan ◽  
...  
2018 ◽  
Vol 7 (4.20) ◽  
pp. 541
Author(s):  
Mojtaba Kodadadi ◽  
Ali Khodaii

In this study, the behavior of asphalt mixture was studied using non-destructive Acoustic Emission (AE) technique at low temperatures. For this purpose, two types of bitumen 60/70 and 85/100 with two types of limestone and Silica aggregate were used to construct asphalt mixtures. Polyphosphoric acid (PPA) was used to modify the bitumen in the dosage of 0, 0.5, 1.0 and 1.5% of bitumen weight. Semicircular bending test (SCB) under a steady increasing strain at a rate of 3mm/min was conducted at 0, -10-, and -20 °C. Two AE channels were used to record the Sinusoid output around the crack of SCB sample during crack growth. Analysis of the results obtained from this study using SPSS software indicates that there is a significant relationship between the failure energy of SCB samples and the number of impacts received from AEs. Furthermore, AE energy has a good agreement with the sample failure energy. According to the failure criterion, asphalt mixtures containing 85/100 bitumen modified by 1.0% of PPA and limestone aggregate exhibit more crack resistance among other compositions.  


2012 ◽  
Vol 509 ◽  
pp. 128-135 ◽  
Author(s):  
Ji Qing Zhu ◽  
Shao Peng Wu ◽  
Jin Jun Zhong ◽  
Dong Ming Wang

The effect of substitution of recycled aggregate by natural aggregate on related properties of blended aggregate (without asphalt and mineral filler) and asphalt mixture was investigated in this paper. Demolition waste obtained from Wenchuan earthquake-damaged buildings was used as recycled aggregate in AC-25 asphalt mixture. The absorption, specific gravity and strength of both blended aggregate and asphalt mixture were tested. Results indicate that fine recycled aggregate is not suitable to be used in asphalt mixture because of its high absorption. The substitution of recycled aggregate by natural limestone aggregate can decrease the asphalt absorption and increase the effective specific gravity and indirect tensile strength of asphalt mixture. The quantitative relationship between related properties of blended aggregate and asphalt mixture was obtained. It was concluded that the substitution of recycled aggregate by natural aggregate is a feasible way to use recycled aggregate in asphalt mixture.


2021 ◽  
Vol 45 (1) ◽  
pp. 11-15
Author(s):  
Arabi N.S. Al Qadi ◽  
Taisir S. Khedaywi ◽  
Madhar A. Haddad ◽  
Owies A. Al-Rababa'ah

Technology in transportation used available resources to make it safe, fast, suitable, easy, economic, and environmental to transport people and goods. Olive Husk became an environmental problem as waste materials especially in the Middle East where huge quantities are found. The objective of this research is to investigate the effect of addition of Olive Husk Ash (OHA) on the properties of asphalt concrete mixtures. Marshall Test was used to perform the asphalt concrete mixture by the addition of OHA to the binder of asphalt; different percentages of OHA (0, 5, 10, 15, and 20%) by volume were added to the binder. Five percent of asphalt cements (5, 5.5, 6, 6.5 and 7%) by weight and limestone aggregate were used for preparing asphalt mixture specimens to find the optimum content of asphalt that could be used in the binder. Tests on flow, stability, air void percentage and void in mineral aggregate, retained stability, stiffness, and retained stiffness were made. The principle results on OHA as filler in Asphalt binder improves the Marshall Stability, and void in mineral aggregate and decrease in flow, retained stability, stiffness, and retained stiffness with a 10%-15% of olive husk ash replacement of asphalt binder. The contribution that OHA could be used as a pavement construction material in field.


2013 ◽  
Vol 834-836 ◽  
pp. 252-258
Author(s):  
Peng Ren ◽  
Bo Zhang ◽  
Ya Qiao Wang ◽  
Lu Zhang ◽  
Lin Zhao

Three kinds of combination schemes were designed about SMA-13 asphalt mixture. They were basalt aggregate SMA, limestone aggregate SMA, basalt and limestone aggregate SMA. Through the study of low temperature and high temperature test of three kinds of combination, the low temperature performance of basalt and limestone aggregate SMA was better than that of the basalt aggregate SMA; and the high temperature performance was in between, thus providing important experimental data for the limestones replacing basalt in SMA pavement.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3200
Author(s):  
Francesca Russo ◽  
Rosa Veropalumbo ◽  
Salvatore Antonio Biancardo ◽  
Cristina Oreto ◽  
Fabio Scherillo ◽  
...  

Secondary raw materials consist of production waste or material resulting from recycling processes, currently in large quantities, which can be injected back into the economic system as new raw materials. This study proposes jet grouting waste (JGW) as filler for hot and cold asphalt mixtures applied as base layers of road pavements and investigates the physical and mechanical properties. JGW is derived from soil consolidation performed during underground roadway tunnel construction. The research compares three asphalt mixtures: (a) hot mixture containing limestone aggregate-filler (HMA), (b) HMA containing JGW (HMAJ), (c) cold recycled asphalt mixture containing JGW (CRAJ). Leaching tests of JGW and reclaimed asphalt pavement (RAP) were conducted; the best configurations of the three mixtures were determined by using the volumetric method through gyratory compaction. Three mastics with filler-to-binder ratios reflecting those of the asphalt mixtures were investigated through delta ring and ball test and frequency sweep test at 0.05% stress by using a dynamic shear rheometer. The morphology of each mixture was further investigated by scanning electron microscopy. The results showed that CRAJ with 28 days of curing time reached the indirect tensile strength (ITS) of HMA (0.73 MPa) within 14 days and, among all studied mixtures, returned the lowest cumulative strain, which was on average 30% lower than that of HMA and HMAJ. The results of this study have shown that the cold alternative mixture, CRAJ, promotes the reuse of two types of waste, RAP and JGW, as it fully meets the reference Italian Technical Standard and ensures good mixture performance in addition to conserving natural resources.


2009 ◽  
Vol 614 ◽  
pp. 269-274 ◽  
Author(s):  
Jun Feng Huang ◽  
Shao Peng Wu ◽  
Li Xing Ma ◽  
Zhi Fei Liu

Moisture damage is a primary mode of distress occurring in hot mix asphalt (HMA) pavements. Usually, the acid aggregate like gneiss must use some anti-stripping additive to resist water damage. Hydrated lime is best known as an anti-stripping additive since 1910. The purpose of this paper is to look at some aspects of the effects of aggregate chemical properties and hydrated lime on the dynamic mechanics and stripping behavior of hot mix asphalt. Two types of aggregates evaluated in this study were limestone and gneiss. The effects of the aggregates type were evaluated on four different aggregate gradations which were composed with the two aggregates in different proportion. And the hydrated lime has been used for HMA pavements to mitigate moisture-related damage in gneiss asphalt mixture. Laboratory tests for different asphalt mixture include Marshall Test, Frozen-thaw Cycle Test, Dynamic Modulus Test (DMT) and Indirect Tensile Fatigue Test (ITFT). Testing data and analyses demonstrated that different aggregate gradations have different mechanical properties. Hydrate lime has greatly contributed to moisture damage resistance in acid aggregate gneiss and enhanced the dynamic modulus. The modified with hydrated lime mixture composed with coarse gneiss aggregate and fine limestone aggregate also has better performance of the mixture against rutting, fatigue and thermal cracking. It can be concluded from ITFT tests that the fatigue life (load cycle times) of additive hydrated lime asphalt concrete is more than neat ones. At last, we can conclude that the selection and design that modified with hydrated lime and fine limestone aggregate replace acid aggregate could create multiple benefits in asphalt mixtures.


2011 ◽  
Vol 413 ◽  
pp. 367-370
Author(s):  
Zhen Jun Wang ◽  
Rui Wang ◽  
Qiong Wang ◽  
Guang Ying Yang

Cement emulsified asphalt mixture is a kind of composite materials, which is comprised of organic and inorganic materials, such as emulsified asphalt and cement, and has both advantages of cement concrete and asphalt concrete. Aiming at the problems of cement emulsified asphalt mixture that adhesion decline and road performance down in the using of process, the Discrete Element Method (DEM) was used to simulate two different kinds of aggregate used in the mixture. Through comparing the splitting strength, stress-strain curve, fracture development situation, and so on, suitable aggregate type, limestone aggregate, was obtained, which had higher adhesion property with cement emulsified asphalt binders.


Author(s):  
Rafi Ullah ◽  
Imran Hafeez ◽  
Waqas Haroon ◽  
Safeer Haider

Asphalt pavement’s surfaces deteriorate over time due to combined effect of traffic and surrounding environment. Fatigue and rutting are the major distresses which cause failures in flexible pavements. Different temperature control computer operated equipment’s are being used worldwide to predict the performance of asphalt mixtures at approximately same condition to those in-service pavements. Similarly, different types of polymers such as elastomer and thermoplastic have been used all over the world in Hot Mix Asphalt (HMA) for the improvement of asphalt mixtures. But little attention has been taken to evaluate the effect of plastomer on hot mix asphalt performance. Moreover, the initial cost of elastomer is higher than other types of polymers such as plastomer. The aim of this research study is to check the effect of various plastomers on high/low temperature performance of asphalt mixture. Four performance tests like Cooper wheel tracker, dynamic modulus, uniaxial repeated load and four-point bending beam test are used to evaluate the effect of different type of plastomers such as polyethylene terephthalate, high density and low density polyethylene with limestone aggregate quarry and 60/70 pen grade asphalt binder. This research study concludes that plastomer increases flexibility and hardness of asphalt mixtures and improves the rut resistance, dynamic modulus and fatigue life of asphalt mixtures. Plastomer modification shows significant benefits as compared to neat binder for high/low temperature performance. Moreover, it can be concluded that plastomer provides an efficient and economical blend of asphalt mixture.


2012 ◽  
Vol 1 (1) ◽  
pp. 36-49
Author(s):  
Carmen Răcănel ◽  
Mihai Dicu ◽  
Ştefan Marian Lazăr ◽  
Adrian Burlacu

Abstract Asphalt mixtures are mixtures of mineral aggregates, filler, bitumen and eventually additives in proportions determined by recipe designed in the laboratory. Asphalt mixtures used as base course are bituminous concrete. The natural aggregates are granular materials of mineral origin that come from natural or artificial crushing of the rocks. In our country there are the various rocks: eruptive or magmatic rocks, metamorphic rocks, sedimentary rocks. To the category of sedimentary rocks belong limestone. Sedimentary rocks are characterized by relatively high porosity and a pronounced stratification, which causes mechanical resistance to be low and vary by direction of load. Due to the structure less dense and weaker mechanical resistance, the limestone are used less in heavy traffic pavement structures. This paper presents an asphalt mixture recipe for the base layer developed in the Laboratory of Roads from Technical University of Civil Engineering Bucharest (TUCEB), using limestone aggregates extracted from Hoghiz Quarry. The paper contains laboratory test results to determine the recipe and laboratory findings leading to the schedule of product.


Sign in / Sign up

Export Citation Format

Share Document