scholarly journals Investigating the Effect of Olive Husk Ash on the Properties of Asphalt Concrete Mixture

2021 ◽  
Vol 45 (1) ◽  
pp. 11-15
Author(s):  
Arabi N.S. Al Qadi ◽  
Taisir S. Khedaywi ◽  
Madhar A. Haddad ◽  
Owies A. Al-Rababa'ah

Technology in transportation used available resources to make it safe, fast, suitable, easy, economic, and environmental to transport people and goods. Olive Husk became an environmental problem as waste materials especially in the Middle East where huge quantities are found. The objective of this research is to investigate the effect of addition of Olive Husk Ash (OHA) on the properties of asphalt concrete mixtures. Marshall Test was used to perform the asphalt concrete mixture by the addition of OHA to the binder of asphalt; different percentages of OHA (0, 5, 10, 15, and 20%) by volume were added to the binder. Five percent of asphalt cements (5, 5.5, 6, 6.5 and 7%) by weight and limestone aggregate were used for preparing asphalt mixture specimens to find the optimum content of asphalt that could be used in the binder. Tests on flow, stability, air void percentage and void in mineral aggregate, retained stability, stiffness, and retained stiffness were made. The principle results on OHA as filler in Asphalt binder improves the Marshall Stability, and void in mineral aggregate and decrease in flow, retained stability, stiffness, and retained stiffness with a 10%-15% of olive husk ash replacement of asphalt binder. The contribution that OHA could be used as a pavement construction material in field.

2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


2016 ◽  
Vol 2 (10) ◽  
pp. 538-545 ◽  
Author(s):  
Ramin Bayat ◽  
Siamak Talatahari

Engineers are constantly trying to improve the performance of the flexible pavements. The main surface distress types which cause maintenance and disruption are rutting and fatigue cracking. For solving these problems, many studies have been carried out until now, ranged from changing gradation to adding polymers and fibers to asphalt mixture. In this study, polypropylene additive was selected as fiber additive because of low costing and having good correlation with asphalt pavement. Three type of polypropylene additive in the length 6, 12 and 19 mm were selected and used at five different percentages in the asphalt concrete mixture. Asphalt specimens were analysed by Marshall Analysis and finally tested by Marshall Stability apparatus. Adding polypropylene increased Marshall Stability (38%), and decreased Flow (39%). These results show that polypropylene can be helpful for increasing pavement life.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Anh Thang Le ◽  
Manh Tuan Nguyen ◽  
Van Phuc Le

The spent fluid catalytic cracking (SFCC), waste from the petroleum industry, is nonstop increasing and causing environmental pollution in Vietnam. This study is an attempt to recycle SFCC in pavement construction. The study investigated the effect of SFCC, as a filler material in the hot-mix asphalt (HMA), on the essential characteristics of the asphalt concrete mix. First, the optimum percentages of bitumen and SFCC rate were investigated based on the Marshall design method. The HMA with SFCC showed more enhanced stability, flow, and other Marshall properties than the asphalt concrete mixture with the optimum limestone filler of 5%. Besides, the effects of SFCC rates on Marshall characteristics were explored. Second, performance tests were conducted to compare the mix with the different optimum content fillers of SFCC, limestone, and Portland cement. The tests include wheel tracking, indirect tensile, fatigue, and dynamic modulus tests to evaluate the performance of HMA with SFCC. It was found that the asphalt mixture with the optimum SFCC filler content can enhance pavement performance and improve the rutting and cracking resistance of the asphalt pavement.


2017 ◽  
Vol 753 ◽  
pp. 321-325 ◽  
Author(s):  
Rerhard Halomoan Limbong ◽  
Sigit Pranowo Hadiwardoyo ◽  
Raden Jachrizal Sumabrata ◽  
Raden Hendra Ariyapijati

Pavement construction is expected to support vehicle loads and be weather- and water-resistant. In tropical regions with high temperatures and high rainfall intensity, pavement design and construction must consider the effects of temperature. The addition of crumb rubber (CR) can improve the performance of asphalt concrete in response to vehicle loads and ambient temperature. Fiber-shaped CR can be mixed with the aggregate and bitumen in asphalt concrete. In this study, CR was added to the aggregate in a type of asphalt concrete for wearing courses known as hot mix asphalt (HMA). A series of tests were conducted using the Marshall standard or immersion and wheel tracking machine (WTM). CR was added to the HMA at 5%, 10%, 15%, and 20% in aggregate and further mixed with bitumen with 60/70 penetration grade. The additive materials increased the value of the Marshall stability compared to the virgin asphalt mixture. However, this result was not obtained in the WTM test; the addition of CR increased rutting compared to the asphalt mixture without additive. The addition of CR to HMA reduced the voids in the mix, and weakened the capacity of the asphalt concrete to support repeated vehicle wheel loading.


2021 ◽  
Vol 328 ◽  
pp. 10002
Author(s):  
Fajar Romadhon ◽  
Agata Iwan Candra ◽  
Dwifi Aprillia Karisma ◽  
Muhammad Heri Nastotok ◽  
Rendy Kurnia Dewanta ◽  
...  

Stability is a measure of the strength of an asphalt mixture in resisting deformation due to loading. If a road construction structure cannot withstand the existing load, it will result in road damage that endangers road users. This study aims to improve the stability of the asphalt concrete mixture with the use of crumb rubber. Crumb rubber is used because it has good resistance and elasticity. The research was conducted experimentally by making test objects in the laboratory. In this study, five variations crumb rubber (2%, 4%, 6%, 8%, and 10% of the weight asphalt mixture) were carried out with the size of the powder retained on a 40 sieve. Marshall test and analysis of volumetric was carried out to determine the characteristics of the asphalt-concrete mixture. The results showed that the highest Marshall stability was obtained at 10% crumb rubber with a stability value of 1422 kg. The use of rubber powder can significantly increase the strength and quality of the asphalt-concrete mixture. Thus, crumb rubber can be used, and this percentage can be used as a reference in the manufacture of asphalt-concrete mixtures in order to obtain good road pavement quality.


2019 ◽  
Vol 24 (2) ◽  
pp. 166
Author(s):  
Kusdiyono Kusdiyono ◽  
Supriyadi Supriyadi ◽  
Tedjo Mulyono ◽  
Sukoyo Sukoyo

At present, plastic is a material that is needed by the community at large, where the impact is also very extraordinary after the plastic is used in everyday life which can cause serious problems if the management is not done properly. The problem of plastic waste does not only occur in the city of Semarang, but also in other cities, so that the Ministry of Environment and Forestry has implemented a paid plastic bag program in the short term. But this is only to deal with problems in the short term. In the long run, it will not solve the problem of "plastic waste", because the policy actually encourages people to buy plastic which, of course, will add a new burden for the community to buy it. Based on the above problems, it is necessary to utilize this plastic waste to be made into road pavement materials such as in the manufacture of Asphal Concrette Wearing Course, by making 5 mixed variations ranging from (2 to 10)% of the weight of the aggregate . This research was initiated through a survey process, material procurement, testing of stacking materials, making test specimens, testing specimens. The results of the research can show that the type of Thermosetting plastic waste has a significant influence on the Asphalt Concrete mixture AC-WC heat mixture, including: Density, Marshall Stability, Flow, VIM, VMA, MQ and the remaining Marshall Stability tend to show an increase, moderate VFA and VIMrefusal Density values tend to show a decrease. Thus the plastic waste from the Thermosetting type can be used as a partial replacement of the aggregate for the Asphalt Concrete mixture AC-WC heat mixture with a plastic waste content is limited to a maximum of 10% and at an optimum asphalt content of 5.55%. Thus this research is expected to be of benefit to the industry and the people of Semarang in relation to the use of plastic waste for road pavement.


2012 ◽  
Vol 509 ◽  
pp. 123-127
Author(s):  
Shao Peng Wu ◽  
Pei Qiang Cui ◽  
Deng Feng Zhang

The property of aggregate has a significant effect on the performance of asphalt mixture because of its high proportion. Asphalt mixture prepared by some kind of aggregate cause the inadequate compaction problem, which results in moisture damage due to its large air void. Limestone manufactured sand is considered as one of the useful solution to overcome the compaction problem. In this paper, fine aggregate is substituted by different proportion of limestone manufactured sand (LMS). The effect of replacement ratio on volume properties and pavement performance is studied. The results show that the limestone manufactured sand can improve the pavement performance and is benefit to the compaction of andesite asphalt mixture. Furthermore, this research also provided some valuable parameters for guiding the pavement construction in the future.


Jurnal CIVILA ◽  
2018 ◽  
Vol 3 (2) ◽  
pp. 146
Author(s):  
Heru Prasetyo ◽  
Samsul Arif

HRS-BC (Hot Roller Sheet) is a type of flexible pavement construction because it uses asphalt as a binder between the aggregates. This study uses water hyacinth as a substitute for cellulose fiber in the mixture of HRS-BC. The purpose of this study is to determine the effect of water hyacinth cellulose fiber in HRS mixture to the Marshall characteristics. This research uses trial and error method, resulting 7.19 % asphalt content to the total aggregate weight with the variation of cellulose fibers are 3%, 4%, 5%, 6% and 7%. Marshall Test is performed to determine the effect of adding the cellulose fiber in the mixture to the components of Marshall Properties, for example Marshall Stability, % of Void Filed With Asphalt (VFWA), % of Void in The Mix (VIM), Plastic Fatigue (Flow), and Marshall Quotient (MQ).The result of this study is Marshall evaluation where the greatest score is obtained for stability of 1601 kg, flow of 4.60 mm, Quotient Marshall of 375.44 kg/mm, VMA of 20.45%, VFWA of 86.79 %, and VIM score of 4.19 %. It shows that the best cellulose fiber content is 3 % of asphalt level of 7,19 % and has been in accordance with Bina Marga 2010 Division 6 specification and can be used in asphalt mixture of HRS-BC.


Author(s):  
Tino Putro Pangestu ◽  
Wasiu Akande Ahmad ◽  
Adi Setiabudi Bawono ◽  
Mohamad Aqifd

This study aims to determine Marshall's characteristics using asphalt binder modified polymer AC 50/70 (Starbit E-55) using local Bantak material. The test method used is a hot mix asphalt (Hot Mix) with the Marshall method. The asphalt content used was 5% successively; 5.5%; 6%; 6.5%; and 7% consisting of 3 specimens for each variant. The research was carried out at the Material Laboratory of the Department of Civil Engineering and Planning, Faculty of Engineering, Yogyakarta State University. The results of the Marshall characteristic performance test at the Optimum Asphalt Level (KAO) 6.5% are as follows: Marshall stability mean value is 1197.6 kg, Density mean value is 2.34 gr/cc, the mean value of melt (Flow) is 3, 1 mm, the mean value of VIM (Void in Mix) was 4.83%, the mean value of VMA (Void in Mineral Aggregate) was 13.40%, the mean value of VFB (Void Filled Bitumen) was 60.61%, and the mean value of MQ (Marshall Quotient) 391.08 kg/mm.


2019 ◽  
Vol 9 (4) ◽  
pp. 628 ◽  
Author(s):  
Lívia Garcia-Gil ◽  
Rodrigo Miró ◽  
Félix Pérez-Jiménez

Thin asphalt concrete overlays are a maintenance technique that mainly restore the functional properties of pavements. One of the main issues in thin overlays is reflective cracking that can cause early deterioration and reduce their service life. For this reason, the purpose of this investigation is to evaluate the effect of material selection on cracking performance of asphalt concrete mixtures for thin overlays. In particular, this paper evaluates the role of aggregate skeleton gradation. The study of the effect of aggregate gradation was divided into two stages: (1) fine fraction content and (2) maximum nominal aggregate size. Based on this, up to seven asphalt mixture gradations were designed and evaluated through the Fénix test at different test temperatures. The results showed a significant correlation between the fine fraction content, and maximum nominal aggregate size, and the cracking performance of the asphalt concrete mixtures. Mixtures manufactured with a low content of fine aggregates, as well as small nominal maximum size, experienced a further improvement of their toughness. These results reflected the importance of considering not only the effect of asphalt binder and environmental conditions but also aggregate gradation in the design of asphalt concrete mixtures in order to achieve a desirable cracking performance.


Sign in / Sign up

Export Citation Format

Share Document