Performance study and engineering application of grouting materials with a large content of solid waste

2021 ◽  
Vol 312 ◽  
pp. 125464
Author(s):  
Benan Shu ◽  
Min Zhou ◽  
Tengyu Yang ◽  
Yongling Li ◽  
Putao Song ◽  
...  
Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 906 ◽  
Author(s):  
Chunjing Zhang ◽  
Bo Shuai ◽  
Xuefeng Zhang ◽  
Xinxin Hu ◽  
Hui Zhang ◽  
...  

Flexibility, stretchability, and flame retardancy are of ever increasing importance in constructing grouting materials. Herein, a simple and effective strategy to make organic-inorganic composite grouting material in a “flexible, stretchable, and flame retardant” way was based on the excellent synergistic interactions among polyurethane prepolymer, red mud, polyethylene glycol, and trimethylolpropane. The resultant polyurethane/red mud composite grouting material with three-dimensional network structure presented a favorable flexibility, desirable compressive strength of 29.2 MPa at 50% compression state, and a good elongation at 15.1%. The grouting material was mainly composed of amorphous polyurethane and crystalline red mud, and its probable formation mechanism was reaction of prepolymer with H2O, polyethylene glycol and trimethylolpropane under vigorous stirring in the presence of catalyst. Furthermore, the grouting material possessed favorable thermal stability, flame retardancy and repairment performance for roadway cracks. This work may open a simple and convenient avenue for the massive engineering application of red mud and preparation of flexible organic-inorganic hybrid grouting material.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Guijun Luo ◽  
Chao Xiao ◽  
Yuan Liu ◽  
Kejun Feng ◽  
Qingguo Ren

Great practical significance and engineering application value can be achieved when the large amount of discharged soil produced by EPB shield tunnels is recycled and comprehensively utilized. As one of the key processes of shield construction, synchronous grouting needs a large amount of bentonite, cement, fly ash, sand, and other materials. The research on the reuse of shield muck as synchronous grouting material is carried out based on Zhengzhou subway project. The physical properties and phase of the discharged soil from EPB shield tunnels are studied by using laboratory tests and XRD. The statistics show that the shield muck meets the performance requirements of bentonite and fine sand in synchronous grouting materials. The optimal grout ratio of the reused muck is obtained based on the optimization idea of multiobjective programming by MATLAB. Considering the combined effect of seepage field, stress field, and the timeliness of the grout, the influences of grouting pressure and the filling rate of synchronous grouting on surface settlement, plastic zone of strata, and segment deformation are analyzed by using finite difference method. The results prove that the surface settlement and segment deformation can be better controlled when the grouting pressure is at 0.18 MPa and the grouting rate is at 120%–150%.


2021 ◽  
Vol 276 ◽  
pp. 02027
Author(s):  
Taotao Li

It is an urgent problem that the construction solid waste is difficult to be treated, and its recycling provides a way for its treatment. The quality of construction solid waste recycled aggregate is lower than that of natural aggregate, which limits its extensive application in building materials. In order to provide a new method for engineering application of recycled aggregate concrete, the influence of vibration mixing on the performances of full replacement recycled aggregate concrete were studied. The performance indexes of recycled aggregate concrete under ordinary mixing and vibration mixing were compared and analyzed. The experimental results show that compared with natural aggregate concrete, the slump of full replacement recycled aggregate concrete decreased by 58.8%, and 7d and 28d compressive strength decreased by 12.9% and 16.1%, and the splitting strength decreased by 30.6% and 20.1%, and the carbonation depth decreased by 91.5%; Compared with natural aggregate concrete using ordinary mixing, the slump of full replacement recycled aggregate concrete using vibration mixing decreased by 50.9%, the 7d and 28d compressive strength decreased by 6.9% and 10.9%, and the splitting strength decreased by 16.9% and 12.4%, and the 28d carbonation depth decreased by 34.9%. The results show that compared with ordinary mixing, vibration mixing can improve the performance of recycled aggregate concrete, which provides a reference for engineering application.


2015 ◽  
Vol 1088 ◽  
pp. 544-548 ◽  
Author(s):  
Jing Lei Dou ◽  
Jing Feng Dou ◽  
Yu Juan Guo

Water-irruption is the second to gas explosion of major security problems in coal mine. The grouting material is composed of fly ash and montmorillonite separately according to a certain proportion with pure cement material. On the site grouting test and compare the compressive strength of the stones of the body and the size of the diffusion radius, and compare the grouting materials with pure cement materials. Through the comparative and analysis, the reasonable grouting materials are choosen.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Xicai Gao ◽  
Xinyu Wang ◽  
Xiangdong Liu

Drift-sand layer is a common weak stratum in mine construction. The construction of the shaft passing over the drift-sand layer is very difficult. Traditional construction method faces many problems such as long construction period, high construction cost, poor working environment, and uncontrollability of the support effect. In view of the loose and fragile rock mass with great deformation of sinking and driving engineering penetrating drift-sand layers in coal mine, the reaction mechanism and shortcomings of conventional chemical grouting materials were analyzed. New-type polymer grouting materials were prepared with catalysts and vinyl epoxy resin, which was made from epoxy resin. A comprehensive chemical grouting construction technology was proposed, which comprises initiative closing, concentrated bypass flow, water plugging priority, and secondary sand curing for the inclined shaft passing over the drift-sand layer. Results show that new-type polymer sand-cured materials have lower viscosity, better grout ability, and fire resistance, and the solidified material has stronger bonding strength and better deformation resistance compared with traditional chemical grouting materials. The engineering application effect is very prominent in controlling water burst and leakage at the drift-sand layer; thus the on-site comprehensive construction progress and safety are guaranteed.


2014 ◽  
Vol 45 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Robert J. Calin-Jageman ◽  
Tracy L. Caldwell

A recent series of experiments suggests that fostering superstitions can substantially improve performance on a variety of motor and cognitive tasks ( Damisch, Stoberock, & Mussweiler, 2010 ). We conducted two high-powered and precise replications of one of these experiments, examining if telling participants they had a lucky golf ball could improve their performance on a 10-shot golf task relative to controls. We found that the effect of superstition on performance is elusive: Participants told they had a lucky ball performed almost identically to controls. Our failure to replicate the target study was not due to lack of impact, lack of statistical power, differences in task difficulty, nor differences in participant belief in luck. A meta-analysis indicates significant heterogeneity in the effect of superstition on performance. This could be due to an unknown moderator, but no effect was observed among the studies with the strongest research designs (e.g., high power, a priori sampling plan).


Sign in / Sign up

Export Citation Format

Share Document