scholarly journals New Chemical Grouting Materials and Rapid Construction Technology for Inclined Shaft Penetrating Drift-Sand Layer in Coal Mine

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Xicai Gao ◽  
Xinyu Wang ◽  
Xiangdong Liu

Drift-sand layer is a common weak stratum in mine construction. The construction of the shaft passing over the drift-sand layer is very difficult. Traditional construction method faces many problems such as long construction period, high construction cost, poor working environment, and uncontrollability of the support effect. In view of the loose and fragile rock mass with great deformation of sinking and driving engineering penetrating drift-sand layers in coal mine, the reaction mechanism and shortcomings of conventional chemical grouting materials were analyzed. New-type polymer grouting materials were prepared with catalysts and vinyl epoxy resin, which was made from epoxy resin. A comprehensive chemical grouting construction technology was proposed, which comprises initiative closing, concentrated bypass flow, water plugging priority, and secondary sand curing for the inclined shaft passing over the drift-sand layer. Results show that new-type polymer sand-cured materials have lower viscosity, better grout ability, and fire resistance, and the solidified material has stronger bonding strength and better deformation resistance compared with traditional chemical grouting materials. The engineering application effect is very prominent in controlling water burst and leakage at the drift-sand layer; thus the on-site comprehensive construction progress and safety are guaranteed.

2015 ◽  
Vol 1088 ◽  
pp. 544-548 ◽  
Author(s):  
Jing Lei Dou ◽  
Jing Feng Dou ◽  
Yu Juan Guo

Water-irruption is the second to gas explosion of major security problems in coal mine. The grouting material is composed of fly ash and montmorillonite separately according to a certain proportion with pure cement material. On the site grouting test and compare the compressive strength of the stones of the body and the size of the diffusion radius, and compare the grouting materials with pure cement materials. Through the comparative and analysis, the reasonable grouting materials are choosen.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3277
Author(s):  
Zhenhua Su ◽  
Zaiqin Wang ◽  
Da Zhang ◽  
Tao Wei

Epoxy resins are widely used for repairing cracks in stone, mortar and masonry. A main factor that influences the grouting quality is the permeability of grout. However, the permeability will deteriorate over time because of the reaction of chemical grouting materials, which will greatly affect the results of grouting. To the best of our knowledge, there are few reports that focus on the time-varying properties of viscosity and affinity of epoxy resins grouting material. In this paper, we investigate the changing rules of viscosity and affinity with time by studying the viscosity, surface tension and contact angle of the epoxy grouting material. We establish the mathematical model for the time-dependent properties of CW epoxy resin on viscosity and affinity with experimental verification. Moreover, we make a detailed discussion on the modeling of viscosity variation considering both time and temperature. The results show important guiding significance and application value for judging the grout irrigability in the construction process.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2864 ◽  
Author(s):  
Xiaoguang Zhang ◽  
Zhenyue Song ◽  
Jianpu Da ◽  
Jianbao Fu

The real-time tension monitoring of wire ropes is a universal way to judge whether the hoist is overloaded in the special working environment of the coal mine. However, due to the strong drafts, unevenness of guide and flexible vibration of wire ropes, it is a challenge to monitor the tension with high accuracy. For this purpose, a new type of acoustic filtering sensor is designed in this study. To adapt to the violent vibration during the monitoring process, a structure with a cylindrical cavity and a narrow gap is designed in the sensor. The coupling between the internal fluid and sensor structure can greatly absorb the vibration energy. With the view of optimizing the filtering performance of the sensor, the influences on the filtering characteristics are presented and analyzed through employing different structural and acoustic parameters in simulations. Finally, acoustic filtering sensor prototypes based on optimized parameters are calibrated and tested in a real coal mine. The results have revealed that our acoustic filtering sensor can not only address the deficiencies of current pressure sensors in coal mining and achieve tension monitoring in real-time, but is also able to diagnose and forecast the occurrence of tension imbalance accidents.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yijie Shi ◽  
Pengfei Wang ◽  
Ronghua Liu ◽  
Xuanhao Tan ◽  
Wen Zhang

Coalbed water injection is the most basic and effective dust-proof technology in the coal mining face. To understand the influence of coalbed water injection process parameters and coalbed characteristic parameters on coal wetting radius, this paper uses Fluent computational fluid dynamics software to systematically study the seepage process of coalbed water injection under different process parameters and coalbed characteristic parameters, calculation results of which are applied to engineering practice. The results show that the numerical simulation can help to predict the wetness range of coalbed water injection, and the results can provide guidance for the onsite design of coalbed water injection process parameters. The effect of dust reduction applied to onsite coalbed water injection is significant, with the average dust reduction rates during coal cutting and support moving being 67.85% and 46.07%, respectively, which effectively reduces the dust concentration on the working face and improves the working environment.


2021 ◽  
Vol 11 (12) ◽  
pp. 5531
Author(s):  
Linlin Xie ◽  
Yajiao Chen ◽  
Ruidong Chang

Prefabricated buildings are the direction of the future development of the construction industry and have received widespread attention. The effective execution of prefabricated construction project scheduling should consider resource constraints and the supply arrangement of prefabricated components. However, the traditional construction resource-constrained project scheduling implementation method cannot simultaneously consider the characteristics of the linkage between component production and on-site assembly construction. It cannot also fully adapt to the scheduling implementation method of the prefabricated construction projects. It is difficult to work out a reasonable project schedule and resource allocation table. In order to determine the relevant schedule parameters that can reflect the actual construction situation of the prefabricated building and meet the scheduling requirements of the prefabricated project, this study proposes a prefabricated construction project scheduling model that considers project resource constraints and prefabricated component supply constraints. Additionally, it improves the design of traditional genetic algorithms (GAs). Research results of the experimental calculation and engineering application show that the proposed project scheduling optimization model and GA are effective and practical, which can help project managers in effectively formulating prefabricated construction project scheduling plans, reasonably allocating resources, reducing completion time, and improving project performance.


2019 ◽  
Vol 136 ◽  
pp. 04080
Author(s):  
Guohui Cao ◽  
Reqiang Liu ◽  
Jing Liu ◽  
Xiang Gao ◽  
Peng Wang

The complex three-dimensional traffic construction often occur when the lower structure cannot bear the construction load and other special cases, indicating the need for temporary reinforcement of the lower structure. In this paper, combined with a project construction example, various temporary reinforcement technologies are adopted to solve the insufficient bearing capacity during understructure construction, which poses a serious danger, to ensure synchronous construction of the understructure and viaduct. Compared with the traditional construction technology, the temporary reinforcement technology proposed in this paper features the advantages of saving project cost and time and has achieved better economic and social benefits.


2012 ◽  
Vol 468-471 ◽  
pp. 1266-1269
Author(s):  
Yan Jun Zhang ◽  
Zi Ming Kou ◽  
Gui Jun Gao ◽  
Jun Zhang

Abstract. To improve the automation degree in special working environment which contains explosive gas. We develop a new type of temperature control hydraulic sensor basically on theory and lots of experiments. As the temperature reaches about 85°C,the motion part of the inductor will stretch to a certain length, and then it will push the adjusting rod. Simultaneously,the adjusting rod will overcome the elastic force of the spring and compel the spool valve to deform, and finally the control valve port will be open, it allows the control oil of the hydraulic system to pass. At last it reaches our destination that we can make the control of hydraulic circuit be realized.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Yingwei Hong ◽  
Xiaoping Wu ◽  
Peng Zhang

A new type of cement-soil mixing pile reinforced by basalt fibre is proposed for increasing the bearing capacity of cement-soil mixing piles. This work primarily consists of three parts. First, the process of construction technology is proposed, which could allow uniform mixing of the basalt fibre in cement-soil. Second, the optimal proportions of the compound mixtures and the mechanical properties of the pile material are obtained from unconfined compression strength test, tensile splitting strength test, and triaxial shear test under different conditions. Third, the reliability of the construction technology, optimal proportions, and mechanical properties are verified by testing the mechanical properties of the drilling core sample on site.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 906 ◽  
Author(s):  
Chunjing Zhang ◽  
Bo Shuai ◽  
Xuefeng Zhang ◽  
Xinxin Hu ◽  
Hui Zhang ◽  
...  

Flexibility, stretchability, and flame retardancy are of ever increasing importance in constructing grouting materials. Herein, a simple and effective strategy to make organic-inorganic composite grouting material in a “flexible, stretchable, and flame retardant” way was based on the excellent synergistic interactions among polyurethane prepolymer, red mud, polyethylene glycol, and trimethylolpropane. The resultant polyurethane/red mud composite grouting material with three-dimensional network structure presented a favorable flexibility, desirable compressive strength of 29.2 MPa at 50% compression state, and a good elongation at 15.1%. The grouting material was mainly composed of amorphous polyurethane and crystalline red mud, and its probable formation mechanism was reaction of prepolymer with H2O, polyethylene glycol and trimethylolpropane under vigorous stirring in the presence of catalyst. Furthermore, the grouting material possessed favorable thermal stability, flame retardancy and repairment performance for roadway cracks. This work may open a simple and convenient avenue for the massive engineering application of red mud and preparation of flexible organic-inorganic hybrid grouting material.


2021 ◽  
Author(s):  
Chun-Ming Jimmy Lin ◽  
Mohsen Saboktakin Rizi ◽  
Chia-Kai Chen

Abstract This study performed experiments and thermodynamic calculations to elucidate the effects of diffusion temperature on interfacial evolution and mechanical properties of pure titanium and carbon steel (i.e., steel) sheets bonded via a new type of multi-pass continuous hot-roll diffusion with nickel interlayer. The interfacial evolution results revealed that this new type of multi-pass continuous hot-roll diffusion treatment showed a very good adherence due to its metallurgy bonding, because it made a remarked improve to between compound and intermetallic compounds relationship. Secondly, in mechanical properties results revealed that the highest shear strength (∼470 MPa) was obtained at a processing temperature of 850°C. The highest peel strength (∼21 N/mm) was obtained in the sample processed at 900°C. Bonding temperatures above and below these levels reduced the bond strength respectively due to poor atom diffusion and excessive compound formation, resulting in joint failure at the Ti-Ni interface. Extensive cleavage planes with various alignments were observed on the fracture surfaces in these cases. Overall, a hot-rolling temperature of 850°C was found to provide the optimal tradeoff between interfacial bonding strength and ductility. This work provided an economical and convenient solution for broadening the engineering application of interface between sheets of pure titanium and steel.


Sign in / Sign up

Export Citation Format

Share Document