Effect of different treatments of crumb rubber on the durability characteristics of rubberized concrete

2022 ◽  
Vol 318 ◽  
pp. 126030
Author(s):  
Rida Alwi Assaggaf ◽  
Salah Uthman Al-Dulaijan ◽  
Mohammed Maslehuddin ◽  
Omar S. Baghabra Al-Amoudi ◽  
Shamsad Ahmad ◽  
...  
2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Nurazuwa Md Noor ◽  
H. Hamada ◽  
Y. Sagawa ◽  
D. Yamamoto

This paper present the effect of crumb rubber on its ability to produce concrete with structural strength when it was used directly from the plant without any treatment process. Crumb rubber was added as fine aggregates at 0%, 10%, 15% and 20% of sand volume meanwhile silica fume was added at 10% by cement weight. Three main series of concrete namely rubberized concrete with water-to-cement ratio of 50% and 35% was design and development of compressive strength was observed from day 7 until 91 days. Also, effectiveness of crumb rubber under flexural strength and splitting tensile strength was studied at 28 days curing age. Effect of crumb rubber on durability performance was done on chloride ion penetration resistance performance by migration test and by immersion in salt water. Chloride ion diffusion in rubberized concrete by migration test was carried out under steady state condition using effective diffusion coefficient, De meanwhile, immersion test in salt water was conducted under non-steady state condition using apparent diffusion coefficient, Da. Results showed that compressive strength was decrease with the increasing of crumb rubber in the mixture.  Even though the strength were reducing with the inclusion of crumb rubber, the reduction were less than 50% and it achieved acceptable structural strength. Chloride transport characteristics were improved by increasing amount of CR and rubberized concrete with w/c = 0.35 gave better resistance against chloride ion compared to w/c = 0.50 with more than 50% difference. Silica fume provide slightly strength increment compared to normal rubberized concrete and the same behavior was observed during chloride ion diffusion test.


1992 ◽  
Vol 19 (5) ◽  
pp. 912-923 ◽  
Author(s):  
Neil N. Eldin ◽  
Ahmed B. Senouci

Growing piles of discarded tires are potential sources of fire and health hazards. The current disposal methods are wasteful and costly. As a possible solution to the problem of scrap-tire disposal, an experimental study was conducted to examine the potential use of rubber aggregate (tire chips and crumb rubber) as mineral aggregate substitute in Portland cement concrete mixes. The research focused on determining the strength characteristics of rubberized concrete and examined the relationship between the size, percentage, and shape of rubber aggregate and the strength measured.Rubberized concrete was found to possess good esthetics, acceptable workability, and a smaller unit weight than plain concrete. However, it exhibited low compressive and tensile strengths and lower resistance to repeated freezing and thawing cycles than that of plain concrete. A statistical analysis of the experimental data suggested that only the percentage by volume of rubber in the mix has a significant effect on strength. The size and shape was found insignificant. Unlike plain concrete, rubberized concrete did not demonstrate the typical brittle failure. It exhibited a ductile, plastic failure, and showed the ability to absorb a large amount of plastic energy under compressive and tensile loads. Key words: rubberized concrete, concrete properties, compression, durability, failure, modulus of elasticity, slump, tension, toughness, workability.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.


2005 ◽  
Vol 32 (6) ◽  
pp. 1075-1081 ◽  
Author(s):  
Ashraf M Ghaly ◽  
James D Cahill IV

Waste rubber tires that cannot be processed for useful applications are numbered in the millions around the world. The build up of old rubber tires in landfills is commonly considered a major threat to the environment, and it is unquestionably a burden on landfill space. This research project was an investigation into the possibility of using fine rubber particles in concrete mixtures. The experimental testing program was designed to study the effect of the addition of crumb rubber, as replacement of a portion of fine aggregates (sand), on the strength of concrete. Rubber was added to concrete in quantities of 5%, 10%, and 15% by volume of the mixture. Three different water/cement ratios were used: 0.47, 0.54, and 0.61. A total of 180 concrete cubes were made. The cubes were tested in compression at 1, 7, 14, 21, and 28 d with the load continuously and automatically measured until failure. The load values were used to calculate compressive stress as related to different rubber contents and water/cement ratios. Compression test results were used to develop several plots relating rubber content and water/cement ratio to compressive stress of concrete. Test results gathered in this research project indicated that the addition of crumb rubber to concrete results in a reduced strength as compared with that of conventional concrete. Based on the experimental results, correlations have been developed to estimate the reduction in concrete strength as a function of the rubber content in the mix.Key words: compressive strength, concrete, crumb rubber, rubberized concrete.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012022
Author(s):  
T Y Pei ◽  
S N Mokhatar ◽  
N A N A Mutalib ◽  
S J S Hakim

Abstract Rubberized concrete was innovated by many researchers to enhance energy absorption under impact load and by reusing scrap tires. Thus, this research was aims to develop the numerical procedure using the Finite Element Method (FEM) to simulate modified rubberized concrete under impact loads and predict its energy absorption under different impact loads. Three existing constitutive models: Concrete Damage Plasticity (CDP), Drucker-Prager (DP), and Modified Drucker-Prager Cap (MDPC) available in ABAQUS software were used to replicate the rubberized concrete with 10% of Rice Hush Ash (RHA) as cement substitution and different percentages (0%, 5%, 10%, 15%, and 20%) of crumb rubber as sand replacement. All three models produced successful FEM results with reasonable modelling assumption, and the CDP model was more effective in simulating rubberized concrete under impact to predict energy absorption than DP and MDPC models. Further, it was concluded that crumb rubber could enhance the energy absorption of concrete. Generally, the energy absorption of the concrete increased as the crumb rubber increase. However, the strength decreased as the crumb rubber increased, but 10% of RHA in concrete mix can maintain the concrete strength. Overall, this study reveals that FEM incorporated with the CDP model is able to predict the impact response of modified crumb rubber as an application of concrete road barrier.


2019 ◽  
Vol 8 (2) ◽  
pp. 5761-5765

With an objective of saving the environment by providing crumb rubber as an alternative to natural fine aggregate this paper presents a study carried out to find the mechanical properties of rubberized concrete. Rubberized concrete is made up of waste rubber from vehicle tyres and other rubber waste which otherwise is left out polluting the environment. In this paper, 7.5% of crumb rubber (obtained by shredding the vehicle tyres) as an alternative to fine aggregate and 7.5% of fly-ash as an alternative to cement is added with other ingredients of concrete to produce an eco-friendly concrete which can be used economically and effectively for construction along the coastal areas. Various properties like workability, compressive strength, split tensile strength, and flexural strength was carried out on concrete specimens exposed to the natural marine environment along the coast of Visakhapatnam, Andhra Pradesh. The total exposure of concrete specimen was about 150 days, and various specimens were tested at 7, 28, 90, 120 and 150 days, respectively. The test results showed that with a slight compromise in strength, the workability of concrete and resistance to the effect of seawater on the strength of concrete significantly improved with the addition of crumb rubber and fly-ash.


This study aimed to investigate abrasion resistance, flexural toughness and impact resistance of concrete mixes with incorporated particles of crumb rubber (CR) as a partial substituent by volume to concrete natural aggregates. Seven concrete mixes were prepared with water to cement ratio 0.4 and cement content 450 kg/m3 . One mix, with no rubber content, was considered as a reference mix to compare the designated mechanical properties of plain rubberized mixes, while the remaining six mixes contained crumb rubber as a partial replacer at levels of 10%, 20% and 30% by volume of each sand and crushed stone aggregates. Abrasion resistance was evaluated according to British standard BS 1338 and impact resistance was measured according to ACI 544.2R. It has been discovered that increasing CR replacement level led to a significant improvement in abrasion resistance, flexural toughness, and impact resistance (number of blows that cause failure cracking). Abrasion lengths decreased by 3.0 - 20.6%, while flexural toughness and impact resistance increased by 8.2 - 39.4% and 18.7 - 365.4% respectively with increasing crumb rubber replacement level.


Sign in / Sign up

Export Citation Format

Share Document