Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl solution

2014 ◽  
Vol 87 ◽  
pp. 504-516 ◽  
Author(s):  
S. Khireche ◽  
D. Boughrara ◽  
A. Kadri ◽  
L. Hamadou ◽  
N. Benbrahim
2013 ◽  
Vol 789 ◽  
pp. 476-483
Author(s):  
Andi Rustandi ◽  
Nitiyoga Adhika ◽  
Tezar Prima ◽  
Nur Aziz

The presence of carbon dioxide (CO2) and water in the fluid can cause severe internal corrosion in the pipelines. This study aims to observe corrosion behavior during the changes in flow rate and acidity conditions in order to obtain the relationship between the parameters by the measured corrosion rate. Corrosion rate measurements were performed for API 5L X52 steel material by using polarization method in 3.5% NaCl solution with saturated CO2 injection. Solution with different acidity were applied which has pH 4, 5, and 6 respectively. To simulate the flow rate, a Rotating Cylinder Electrode RCE was used at various rotation rates 0, 375, 750, 1500, and 3000 rpm, at room temperature (25°C) and atmospheric pressure. Based on testing results, the changes in rotation converted to flow rate showed that the corrosion mechanism of API 5L X52 steel in NaCl solution with saturated CO2 content was mainly controlled by mass transport at pH=4 whereas chemically controlled involved both at pH=5 and pH=6 conditions.


2011 ◽  
Vol 690 ◽  
pp. 369-372 ◽  
Author(s):  
Nor Ishida Zainal Abidin ◽  
Darren Martin ◽  
Andrej Atrens

The corrosion mechanism of Mg alloys in Hank’s solution was elucidated by comparing the corrosion of typical Mg alloys (AZ91, ZE41 and Mg2Zn0.2Mn) and high purity Mg in Hank’s solution at room temperature and in 3% NaCl saturated with Mg(OH)2. Corrosion was characterised by the evolved hydrogen and the surfaces after the immersion tests. Corrosion in Hank’s solution was weakly influenced by microstructure in contrast to corrosion in the 3% NaCl solution, where second phases cause strong micro-galvanic acceleration. This is attributed to the formation of a more protective surface film in Hank’s solution, causing extra resistance between the alpha-Mg matrix and the second phase. The incubation period in Hank’s solution was alloy dependent.


2018 ◽  
Vol 138 ◽  
pp. 130-141 ◽  
Author(s):  
J. Winiarski ◽  
W. Tylus ◽  
A. Lutz ◽  
I. De Graeve ◽  
B. Szczygieł

2016 ◽  
Vol 31 (5) ◽  
pp. 1048-1062 ◽  
Author(s):  
Hong Xu ◽  
Zhiquan Wu ◽  
Xiaoru Wang ◽  
Xin Zhang ◽  
Jiping Ren ◽  
...  

2012 ◽  
Vol 482-484 ◽  
pp. 537-540
Author(s):  
Yong Tan ◽  
Cheng Gang Hao ◽  
De Zhi Li ◽  
Zhi Liu Hu ◽  
Jian Min Zeng

The corrosion behavior of Zn27Al3Cu in 3.5 Wt.% NaCl solution is investigated through weight loss method. The morphology of corrosion products were observed and analyzed with optical microscopy (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The experimental results indicate that weight loss of the alloy with time follows the exponential attenuation relationship. Corrosion mechanism of Zn27Al3Cu alloy are intergranular corrosion and preferential corrosion in 3.5 Wt.% NaCl solution, the main corrosion products are compound oxide and chloride.


Author(s):  
Dian Anggraini ◽  
Maman Kartaman Ajiriyanto ◽  
Rosika Kriswarini ◽  
Yanlinastuti Yanlinastuti

FENOMENA KOROSI ZIRKALOY-2 DAN ZIRKALOY-4 DALAM MEDIA LARUTAN NaCl SECARA ELEKTROKIMIA. Zirkaloy-2 dan zirkaloy-4 digunakan sebagai bahan kelongsong pada elemen bahan bakar reaktor daya BWR (Boiling Water Reactor) dan PWR (Pressurized Water Reactor). Selama penggunaanya dalam kolam penyimpanan bahan bakar bekas kemungkinan kelongsong berinteraksi dengan air laut (sea water), dalam hal kondisi abnormal. Ion klorida yang terdapat dalam air laut memiliki potensi penyebab terjadinya korosi pada bahan kelongsong. Tujuan penelitian ini adalah untuk mengetahui fenomena korosi zirkaloy-2 dan zirkaloy-4 dalam media NaCl melalui penentuan parameter korosi dengan teknik tahanan polarisasi, Tafel dan potensiodinamik. Sampel berupa potongan bahan zirkaloy-2 dan zirkaloy-4 dengan dimensi 1x1 cm dilakukan proses mounting dan disolder dengan kawat tembaga, kemudian permukaan sampel dipoles menggunakan amplas 1200 grit. Uji korosi dilakukan dalam sel korosi yang dilengkapi dengan elektrode standar (saturated calomel), elektroda penyangga (grafit) dan elektroda kerja (sampel). Media pelarut yang digunakan adalah larutan NaCl dengan konsentrasi 3,5  %; 0,35 % dan 0,175 %. Hasil penelitian menunjukkan bahwa adanya ion Clˉ pada daerah konsentrasi NaCl 0,175 % sampai dengan 3,5 % tidak mempengaruhi pola mekanisme korosi. Jenis korosi pada daerah potensial ± 250 mV terhadap Ecorr adalah korosi merata dalam bentuk oksida ZrO2. Laju korosi zirkaloy-2 dan zirkaloy-4 pada konsentrasi NaCl 3,5 % diperoleh masing-masing sebesar 6,39×10-3 dan 7,40×10-3 mpy. Fenomena korosi yang diamati dengan teknik potensiodinamik (± 1000 mV terhadap Ecorr) menunjukkan bahwa zirkaloy-2 dan zirkaloy-4 mengalami pasivasi dan korosi pitting. Potensial pitting zirkaloy-2 dan zirkaloy-4 diperoleh masing- masing sebesar -452,8 mV dan -182,8 mV.Kata kunci: Korosi, zirkaloy-2 dan zirkaloy-4, media larutan NaCl, elektrokimia, teknik polarisasi. CORROSION PHENOMENA OF ZIRKALOY-2 AND ZIRKALOY-4 IN NaCl SOLUTION MEDIUM BY ELECTROCHEMICALLY. Zircaloy-2 and zircaloy-4 are used as cladding material in Light Water Reactor, (LWR), Boiling Water Reactor (BWR) and Pressurezid Water Reactor (PWR). During its use in the spent fuel pool may interact between the cladding and seawater in case of abnormal condition. Chloride ion which contained in seawater has the potential for being corrosion in cladding material. The aim of this work was knowing zircaloy-2 and zircaloy-4 corrosion phenomena in NaCl medium by corrosion parameter determination with polarization resistance technique, tafel, and potentiodynamic. Samples are zircaloy-2 and zircaloy-4 pieces material with 1x1 cm dimension. The samples are mounting and soldered with copper wire, then the sample surface are polished by 1200 grade grinding paper. Corrosion test was done with corrosion cell that was completed by electrode standard (saturated calomel), electrode buffer (grafit) and work electrode (sample). Solvent medium was NaCl solution with concentration 3.5 %; 0.35 %; and 0.175 %. The result showed that ion Clˉ contained in NaCl which were concentration area from 0.175 % to 3.5 % did not affect corrosion mechanism. The corrosion type in potential range ± 250 mV to E­­corr was uniform corrosion in ZrO­2 oxide form. Zirkaloy-2 and zirkaloy-4 corrosion rate in 3.5 % NaCl concentration were obtained 6.39×10-3 and 7.40×10-3 mpy respectively. Corrosion phenomenon which was observed by potentiodynamic technique (± 1000 mV to Ecorr) showed that zirkaloy-2 and zirkaloy-4 underwent passivation and pitting corrosion. Pitting potential zirkaloy-2 and zirkaloy-4 were obtained -452.8 mV and -182.8 mV severally.Keywords: Corrosion, zirkaloy-2 and zirkaloy-4, NaCl solvent medium, electrochemical, polarization technique.


2019 ◽  
Vol 9 (9) ◽  
pp. 1092-1099
Author(s):  
Fenghong Cao ◽  
Chang Chen ◽  
Zhenyu Wang

The corrosion characteristics and corrosion mechanism of the extruded ZK80 alloy with different states soaking in 3.5% NaCl solution at room temperature were analyzed via OM, SEM, EDS, XRD and static weightlessness method and other experimental analysis methods. The results show that when the aging temperature is constant, and the corrosion rate decreases with the lengthen of aging time, while when the corrosion time is constant, the corrosion rate increases with the increase in aging time. Appropriate aging treatment not only refines the grain of the alloy, but also precipitates the Mg–Zn phase which can effectively prevent the corrosion process and improve the anti-corrosion properties of the alloy. The main corrosion characteristics of the alloy are filamentary corrosion and pitting corrosion.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 956 ◽  
Author(s):  
Zuopeng Qu ◽  
Lei Wang ◽  
Hongyu Tang ◽  
Huaiyu Ye ◽  
Meicheng Li

In this paper, four composite coatings of nano-SnS/polyvinylbutyral (PVB), nano-MoS2/PVB, nano-SnS-Zn/PVB, and nano-MoS2-Zn/PVB were prepared, and their anti-corrosion mechanism was analyzed by experimental and theoretical calculations. The results of the electrochemical experiments show that the effect of nano-MoS2 on the corrosion protection performance of PVB coating is better than that of nano-SnS in 3% NaCl solution, and that the addition of Zn further enhances this effect, which is consistent with the results of weight loss measurements. Furthermore, the observation of the corrosion matrix by the field emission scanning electron microscope (FESEM) further confirmed the above conclusion. At last, the molecular dynamics (MD) simulation were carried out to investigate the anti-corrosion mechanism of the nanofillers/PVB composites for the copper surface. The results show that both nano-SnS and nano-MoS2 are adsorbed strongly on the copper surface, and the binding energy of nano-MoS2 is larger than that of nano-SnS.


Sign in / Sign up

Export Citation Format

Share Document