scholarly journals Adsorption of Eriochrome Black-T(EBT) using tea waste as a low cost adsorbent by batch studies: A green approach for dye effluent treatments

2020 ◽  
Vol 3 ◽  
pp. 100036
Author(s):  
Megha Bansal ◽  
Prem Kishore Patnala ◽  
Tom Dugmore
2021 ◽  
Vol 25 ◽  
Author(s):  
Rashid Ali ◽  
Ajay Kumar Chinnam ◽  
Vikas R. Aswar

: The deep eutectic mixtures (DESs), introduced as novel alternative to usual volatile organic solvents for organic transformations has attracted a tremendous attention of the research community because of their low cost, negligible vapour pressure, low toxicity, biodegradability, recyclability, insensitive towards moisture, and readily availability from bulk renewable resources. Although, the low melting mixture of dimethyl urea (DMU)/L-(+)-tartaric acid (TA) is still infancy yet much effective as it play double and triple roles such as solvent, catalyst and/or reagent in a same pot for many crucial organic transformations. These unique properties of DMU/TA mixture prompted us to provide a quick overview of where the field stands presently, and where it might be going in near future. To our best knowledge, no review dealing with the applications of a low melting mixture of DMU/TA appeared in the literature except the one published in 2017 describing only the chemistry of indole systems. Therefore, we intended to reveal the developments of this versatile low melting mixture in the modern organic synthesis since its first report in 2011 by Köenig’s team to till date. Hopefully, the present review article will be useful to the researcher working not only in the arena of synthetic organic chemistry but also to the scientists working in other branches of science and technology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hakan Çelebi ◽  
Gülden Gök ◽  
Oğuzhan Gök

Abstract Recently, the search for low-cost eco-friendly adsorbents has become one of the main objectives of researchers. The aim of this study was to test the removal of four heavy metals, namely lead (Pb), zinc (Zn), nickel (Ni) and cadmium (Cd), from a simulated watery solution using brewed tea waste as a potentially suitable adsorbent. The effects of pH levels (2.0–6.0), adsorbent amount (0.1–5.0 g), contact times (1–150 min.) were examined throughout the adsorption process. The results of the experiments showed that the heavy metals elimination yields had an inverse relationship with pH and a linear relationship between the other parameters. The optimum pH for the removal of the heavy metals was between 4.0 and 5.0 in the case of the brewed tea waste. Equilibrium times of 2, 10, 30 and 5 min were required for the adsorption of Pb, Zn, Ni, Cd onto Camellia sinensis, respectively. Based on the results of this study it can be said that brewed tea waste has a high potential to remove heavy metals from aqueous solutions. The maximum adsorption capacities were calculated as 1.197, 1.457, 1.163 and 2.468 mg/g, for Pb, Zn, Ni and Cd, respectively, by fitting the equilibrium data to the Langmuir isotherm model.


2019 ◽  
Vol 43 (12) ◽  
pp. 4706-4720 ◽  
Author(s):  
Mohd Irfan ◽  
Shahidul Islam Bhat ◽  
Sharif Ahmad

RGO dispersed waterborne soy polyester amide nanocomposites were formulated utilizing a solventless VOC free green approach for use as low cost anticorrosive coatings.


2020 ◽  
Vol 36 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Peng Zhang ◽  
Wenxian Wang ◽  
Zimin Kou ◽  
Bo Wang ◽  
Xiaobin Zhong

2015 ◽  
Vol 13 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Abdelrahman B. Fadhil ◽  
Liqaa I. Saeed
Keyword(s):  
Low Cost ◽  

2016 ◽  
Vol 4 (24) ◽  
pp. 9486-9495 ◽  
Author(s):  
Panpan Li ◽  
Zhaoyu Jin ◽  
Rui Wang ◽  
Yong Jin ◽  
Dan Xiao

A three-dimensional flexible electrode derived from nickel–phytate nanoplates was fabricatedviaa green approach, and showed outstanding performance in both water oxidation and supercapacitance.


Author(s):  
Yue Yin ◽  
Gaoyang Xu ◽  
Linlin Li ◽  
Chunlei Qiao ◽  
Yihua Xiao ◽  
...  

Abstract During sediment remediation, adsorbents addition is an effective technology for the removal of contaminants but the cost is often high. In this study, a low-cost adsorbent, ceramsite that made from contaminated riverbed sediment was synthesized. The Fe-modified ceramsite (FMC) was used as adsorbents to remove arsenate from aqueous solutions and reduce the inorganic arsenic release from contaminated sediments. Kinetic studies showed that chemisorption mainly governed the adsorption process while batch studies yielded theoretical adsorption capacity for arsenate of 10.63 mg/g at pH = 7 condition. Co-existing anions and pH have no significant impact on the adsorption process. In the regeneration studies, 91, 86, and 80% of the adsorption capacity were recovered in 3 cycles. In-situ remediation trials revealed that the addition of the adsorbent to sediment surface significantly reduced the release of inorganic arsenic into aqueous system, with a reduction efficiency of 86%. Furthermore, the species of the arsenic in the surface layer was significantly inactivated from an active state to a stable state. These findings highlight the application of the FMC as a facile and cost-effective adsorbent for containment of arsenic in solutions and sediments, demonstrating that they are highly applicable for practical cases.


2020 ◽  
Vol 10 (4) ◽  
pp. 5918-5922 ◽  

A double green approach to the synthesis of silver nanoparticles using chitosan as a reducing agent and microwave radiation has been carried out in this study. Chitosan was extracted from marine crab carapace and the morphology of the produced chitosan was characterized using Scanning Electron Microscope (SEM). The production of silver nanoparticles (AgNPs) was monitored by the formation of surface plasmon resonance (SPR) at the λmax= 420 nm, indicates the reduction of the oxidation state of Ag+ to Ag0. The XRD data confirms the crystallinity nature of obtained AgNps, while the SEM and TEM revealed the formation of near-spherical shapes, polydisperse, heterogeneous distribution of AgNps with the size range between 7 to 25 nm. The antimicrobial activities of the AgNPs were investigated using The prepared AgNPs demonstrated dual mechanism action with chitosan, which acted as a stabilizer on the surface of AgNPs, and enhance the inhibition zone against E. tarda and E. coli. Therefore, the synthesized AgNPs in this study may have excellent potential for clinical application as it is green, low-cost and eco-friendly.


2020 ◽  
Vol 10 (5) ◽  
pp. 6474-6480

Green synthesis of silver nanoparticles (AgNPs) using rice husk (RH) as low-cost agricultural waste material has been gaining importance in recent years. Meanwhile, poly (vinyl alcohol) (PVA) is reported to involve in the green production of AgNPs as low-cost, water-soluble, biocompatible and biodegradable stabilizing polymer. The present study is focussed on the green synthesis of poly (vinyl alcohol) (PVA) - silver nanoparticles (PVA-AgNPs) hybrid using rice husk extract as a reducing agent. The results recorded from UV–vis spectrum and transmission electron microscopy (TEM) support the characterization of AgNPs produced. Synthesised PVA-AgNPs hybrid revealed effective antibacterial activity against Escherichia coli and Bacillus sp.


Sign in / Sign up

Export Citation Format

Share Document