scholarly journals Failure analysis of a leaked oil pipeline

2015 ◽  
Vol 4 ◽  
pp. 88-93 ◽  
Author(s):  
En-Na Yang ◽  
Chang-Ming Fu ◽  
Chen Dong ◽  
Shen Qu ◽  
Ji-Feng Tian ◽  
...  
2019 ◽  
Vol 953 ◽  
pp. 39-44 ◽  
Author(s):  
Yun Ma ◽  
Zi Long Guo ◽  
Jiu Chun Qiao ◽  
Hai Tao Bai

This paper presents corrosion failure analysis of an underground natural gas pipeline. The pipeline material grade is 20# steel. The pipeline transfers multiphase fluid (Crude oil and water) from an oil well to an oil gathering plant. A portion of the line failed due to pitting corrosion under unknown circumstances. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are employed to characterize the scales and/or corrosion products near the failed portion. Based on visual and microscopic analyses and reviewing the background information, the following pitting corrosion sequences were identified: When the water ratio was smaller than 50%, the oil slick could cover the surface of the 20# test samples. Some uncovered surface would be corroded. When the water ratio was more than 70%, the surface of 20# steel contacted with more water. The average corrosion rate increased, and the corrosion products also formed, which would behave as a good diffusion barrier to prevent the underlying steel from further dissolution. Meanwhile, because of the corrosion products, the penetration rate also increased, the trend of local corrosion became weak with the water ratio continued to increase. The pitting corrosion varied with the water ratio because of the protection conferred by the oil slick or the corrosion product layer. Under such conditions, pits emerged on the steel surface until one of them grew faster and failed the oil pipeline.


2013 ◽  
Vol 50 ◽  
pp. 766-773 ◽  
Author(s):  
J.L. Alamilla ◽  
E. Sosa ◽  
C.A. Sánchez-Magaña ◽  
R. Andrade-Valencia ◽  
A. Contreras

2019 ◽  
Vol 106 ◽  
pp. 104177 ◽  
Author(s):  
Qingshan Feng ◽  
Bingchuan Yan ◽  
Pengchao Chen ◽  
Siamack A. Shirazi

2007 ◽  
Vol 14 (6) ◽  
pp. 978-994 ◽  
Author(s):  
Cesar R.F. Azevedo

2016 ◽  
Vol 850 ◽  
pp. 977-983
Author(s):  
Feng Wang ◽  
Bin Feng ◽  
Bao Min Chu ◽  
Yu Ran Fan ◽  
Qiao Fei Sun ◽  
...  

In this paper, the failure analysis was conducted on a non-occupation refined-oil pipeline, in which corrosion perforation occurs when the pipeline was filled with 1.2 MPa air for more than 1 year, and the material of the corrosion pipeline was L245. To find out the reason of the corrosion, some tests such as XRD analysis for corrosion products, corrosion pits analysis, inclusions and microstructure inspection, as well as corrosion simulation trial were conducted. The experimental results showed that the failure was caused by electro-chemical corrosion because of the dissolved oxygen, while the existence of 1.2 MPa inner air and non-metallic inclusions accelerated the corrosion.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


Sign in / Sign up

Export Citation Format

Share Document