scholarly journals Numerical treatment of 2D-Magneto double-diffusive convection flow of a Maxwell nanofluid: Heat transport case study

Author(s):  
Shahanaz Parvin ◽  
Siti Suzilliana Putri Mohamed Isa ◽  
Wasim Jamshed ◽  
Rabha W. Ibrahim ◽  
Kottakkaran Sooppy Nisar
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Taseer Muhammad ◽  
Mir Yasir Umair

The significance of partial slip on double diffusive convection on magneto-Carreau nanofluid through inclined peristaltic asymmetric channel is examined in this paper. The two-dimensional and directional flow of a magneto-Carreau nanofluid is mathematically described in detail. Under the lubrication technique, the proposed model is simplified. The solutions of extremely nonlinear partial differential equations are calculated using a numerical technique. Graphical data are displayed using Mathematica software and Matlab to examine how temperature, pressure rise, concentration, pressure gradient, velocity profile, nanoparticle volume fraction, and stream functions behave on emerging parameters. It is noticed that as the velocity slip parameter is increased, the axial velocity at the channel’s center increases. Additionally, near the boundary, opposite behavior is observed. The temperature, concentration, and nanoparticle profile drops by increasing thermal slip, concentration slip, and nanoparticle slip parameter.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Zehba Raizah

Purpose The purpose of this study is to apply an incompressible smoothed particle hydrodynamics (ISPH) method to simulate the Magnetohydrodynamic (MHD) free convection flow of a nanofluid in a porous cavity containing rotating hexagonal and two circular cylinders under the impacts of Soret and Dufour numbers. Design/methodology/approach The inner shapes are rotating around a cavity center by a uniform circular motion at angular rate ω. An inner hexagonal shape has higher temperature Th and concentration Ch than the inner two circular cylinders in which the temperature is Tc and concentration is Cc. The performed numerical simulations are presented in terms of the streamlines, isotherms and isoconcentration as well as the profiles of average Nusselt and Sherwood numbers. Findings The results indicated that the uniform motions of inner shapes are changing the characteristics of the fluid flow, temperature and concentration inside a cavity. An augmentation on a Hartman parameter slows down the flow speed and an inclination angle of a magnetic field raises the flow speed. A rise in the Soret number accompanied by a reduction in the Dufour number lead to a growth in the concentration distribution in a cavity. Originality/value ISPH method is used to simulate the double-diffusive convection of novel rotating shapes in a porous cavity. The inner novel shapes are rotating hexagonal and two circular cylinders.


Sign in / Sign up

Export Citation Format

Share Document