Requirement for mature T cells, type I interferon and STAT1 in negative T cell selection

Cytokine ◽  
2009 ◽  
Vol 48 (1-2) ◽  
pp. 3
Author(s):  
D.C. Otero ◽  
H. Moro ◽  
Y. Tanabe ◽  
Michael David
2020 ◽  
Vol 38 (17) ◽  
pp. 1938-1950 ◽  
Author(s):  
Nirali N. Shah ◽  
Steven L. Highfill ◽  
Haneen Shalabi ◽  
Bonnie Yates ◽  
Jianjian Jin ◽  
...  

PURPOSE Patients with B-cell acute lymphoblastic leukemia who experience relapse after or are resistant to CD19-targeted immunotherapies have limited treatment options. Targeting CD22, an alternative B-cell antigen, represents an alternate strategy. We report outcomes on the largest patient cohort treated with CD22 chimeric antigen receptor (CAR) T cells. PATIENTS AND METHODS We conducted a single-center, phase I, 3 + 3 dose-escalation trial with a large expansion cohort that tested CD22-targeted CAR T cells for children and young adults with relapsed/refractory CD22+ malignancies. Primary objectives were to assess the safety, toxicity, and feasibility. Secondary objectives included efficacy, CD22 CAR T-cell persistence, and cytokine profiling. RESULTS Fifty-eight participants were infused; 51 (87.9%) after prior CD19-targeted therapy. Cytokine release syndrome occurred in 50 participants (86.2%) and was grade 1-2 in 45 (90%). Symptoms of neurotoxicity were minimal and transient. Hemophagocytic lymphohistiocytosis–like manifestations were seen in 19/58 (32.8%) of subjects, prompting utilization of anakinra. CD4/CD8 T-cell selection of the apheresis product improved CAR T-cell manufacturing feasibility as well as heightened inflammatory toxicities, leading to dose de-escalation. The complete remission rate was 70%. The median overall survival was 13.4 months (95% CI, 7.7 to 20.3 months). Among those who achieved a complete response, the median relapse-free survival was 6.0 months (95% CI, 4.1 to 6.5 months). Thirteen participants proceeded to stem-cell transplantation. CONCLUSION In the largest experience of CD22 CAR T-cells to our knowledge, we provide novel information on the impact of manufacturing changes on clinical outcomes and report on unique CD22 CAR T-cell toxicities and toxicity mitigation strategies. The remission induction rate supports further development of CD22 CAR T cells as a therapeutic option in patients resistant to CD19-targeted immunotherapy.


2002 ◽  
Vol 195 (10) ◽  
pp. 1349-1358 ◽  
Author(s):  
Karen Honey ◽  
Terry Nakagawa ◽  
Christoph Peters ◽  
Alexander Rudensky

CD4+ T cells are positively selected in the thymus on peptides presented in the context of major histocompatibility complex class II molecules expressed on cortical thymic epithelial cells. Molecules regulating this peptide presentation play a role in determining the outcome of positive selection. Cathepsin L mediates invariant chain processing in cortical thymic epithelial cells, and animals of the I-Ab haplotype deficient in this enzyme exhibit impaired CD4+ T cell selection. To determine whether the selection defect is due solely to the block in invariant chain cleavage we analyzed cathepsin L–deficient mice expressing the I-Aq haplotype which has little dependence upon invariant chain processing for peptide presentation. Our data indicate the cathepsin L defect in CD4+ T cell selection is haplotype independent, and thus imply it is independent of invariant chain degradation. This was confirmed by analysis of I-Ab mice deficient in both cathepsin L and invariant chain. We show that the defect in positive selection in the cathepsin L−/− thymus is specific for CD4+ T cells that can be selected in a wild-type and provide evidence that the repertoire of T cells selected differs from that in wild-type mice, suggesting cortical thymic epithelial cells in cathepsin L knockout mice express an altered peptide repertoire. Thus, we propose a novel role for cathepsin L in regulating positive selection by generating the major histocompatibility complex class II bound peptide ligands presented by cortical thymic epithelial cells.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4358-4369 ◽  
Author(s):  
Barbara C. Godthelp ◽  
Maarten J.D. van Tol ◽  
Jaak M. Vossen ◽  
Peter J. van den Elsen

To evaluate the role of T-cell selection in the thymus and/or periphery in T-cell immune reconstitution after allogeneic bone marrow transplantation (allo-BMT), we have analyzed the overall and antigen-specific T-cell repertoires in pediatric allo-BMT recipients treated for leukemia. We observed a lack of overall T-cell receptor (TCR) diversity in the repopulating T cells at 3 months after allo-BMT, as was deduced from complementarity determining region 3 (CDR3) size distribution patterns displaying reduced complexity. This was noted particularly in recipients of a T-cell–depleted (TCD) graft and, to a lesser extent, also in recipients of unmanipulated grafts. At 1 year after allo-BMT, normalization was observed of TCR CDR3 size complexity in almost all recipients. Analysis of the antigen-specific T-cell repertoire at 1 year after BMT showed that the T cells responding to tetanus toxoid (TT) differed in TCR gene segment usage and in amino acid composition of the CDR3 region when comparing the recipient with the donor. Moreover, the TT-specific TCR repertoire was found to be stable within a given allo-BMT recipient, because TT-specific T cells with completely identical TCRs were found at 3 consecutive years after transplantation. These observations suggest an important role for T-cell selection processes in the complete restoration of the T-cell immune repertoire in children after allo-BMT.


2018 ◽  
Author(s):  
Shaylynn Miller ◽  
Patrick Coit ◽  
Elizabeth Gensterblum-Miller ◽  
Paul Renauer ◽  
Nathan C Kilian ◽  
...  

AbstractObjectiveWe examined genome-wide DNA methylation changes in CD8+ T cells from lupus patients and controls, and investigated the functional relevance of some of these changes in lupus.MethodsGenome-wide DNA methylation of lupus and age, sex, and ethnicity-matched control CD8+ T cells was measured using the Infinium MethylationEPIC arrays. Measurement of relevant cell subsets was performed via flow cytometry. Gene expression was quantified by qPCR.ResultsLupus CD8+ T cells had 188 hypomethylated CpG sites compared to healthy matched controls. Among the most hypomethylated were sites associated with HLA-DRB1. Genes involved in the type-I interferon response, including STAT1, were also found to be hypomethylated. IFNα upregulated HLA-DRB1 expression on lupus but not control CD8+ T cells. Lupus and control CD8+ T cells significantly increased STAT1 mRNA levels after treatment with IFNα. The expression of CIITA, a key interferon/STAT1 dependent MHC-class II regulator, is induced by IFNα in lupus CD8+ T cells, but not healthy controls. Co-incubation of naïve CD4+ T cells with IFNα-treated CD8+ T cells led to CD4+ T cell activation, determined by increased expression of CD69, in lupus patients but not in healthy controls. This can be blocked by neutralizing antibodies targeting HLA-DR.ConclusionsLupus CD8+ T cells are epigenetically primed to respond to type-I interferon. We describe an HLA-DRB1+ CD8+ T cell subset that can be induced by IFNα in lupus patients. A possible pathogenic role for CD8+ T cells in lupus that is dependent upon a high type-I interferon environment and epigenetic priming warrants further characterization.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Taku Ito-Kureha ◽  
Takahisa Miyao ◽  
Saori Nishijima ◽  
Toru Suzuki ◽  
Shin-ichi Koizumi ◽  
...  

AbstractA repertoire of T cells with diverse antigen receptors is selected in the thymus. However, detailed mechanisms underlying this thymic positive selection are not clear. Here we show that the CCR4-NOT complex limits expression of specific genes through deadenylation of mRNA poly(A) tails, enabling positive selection. Specifically, the CCR4-NOT complex is up-regulated in thymocytes before initiation of positive selection, where in turn, it inhibits up-regulation of pro-apoptotic Bbc3 and Dab2ip. Elimination of the CCR4-NOT complex permits up-regulation of Bbc3 during a later stage of positive selection, inducing thymocyte apoptosis. In addition, CCR4-NOT elimination up-regulates Dab2ip at an early stage of positive selection. Thus, CCR4-NOT might control thymocyte survival during two-distinct stages of positive selection by suppressing expression levels of pro-apoptotic molecules. Taken together, we propose a link between CCR4-NOT-mediated mRNA decay and T cell selection in the thymus.


1996 ◽  
Vol 183 (3) ◽  
pp. 1111-1118 ◽  
Author(s):  
J P DiSanto ◽  
D Guy-Grand ◽  
A Fisher ◽  
A Tarakhovsky

The common cytokine receptor gamma chain (gammac), which is a functional subunit of the receptors for interleukins (IL)-2, -4, -7, -9, and -15, plays an important role in lymphoid development. Inactivation of this molecule in mice leads to abnormal T cell lymphopoiesis characterized by thymic hypoplasia and reduced numbers of peripheral T cells. To determine whether T cell development in the absence of gammac is associated with alterations of intrathymic and peripheral T cell selection, we have analyzed gammac-deficient mice made transgenic for the male-specific T cell receptor (TCR) HY (HY/gammac- mice). In HY/gammac- male mice, negative selection of autoreactive thymocytes was not diminished; however, peripheral T cells expressing transgenic TCR-alpha and -beta chains (TCR-alphaT/betaT) were absent, and extrathymic T cell development was completely abrogated. In HY/gammac- female mice, the expression of the transgenic TCR partially reversed the profound thymic hypoplasia observed in nontransgenic gammac- mice, generating increased numbers of thymocytes in all subsets, particularly the TCR-alphaT/betaT CD8+ single-positive thymocytes. Despite efficient positive selection, however, naive CD8+ TCR-alphaT/betaT T cells were severely reduced in the peripheral lymphoid organs of HY/gammac- female mice. These results not only underscore the indispensible role of gammac in thymocyte development, but also demonstrate the critical role of gammac in the maintenance and/or expansion of peripheral T cell pools.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Hawa Vahed ◽  
Anshu Agrawal ◽  
Ruchi Srivastava ◽  
Swayam Prakash ◽  
Pierre-Gregoire A. Coulon ◽  
...  

ABSTRACT A large proportion of the world population harbors herpes simplex virus 1 (HSV-1), a major cause of infectious corneal blindness. HSV-specific CD8+ T cells protect from herpesvirus infection and disease. However, the genomic, phenotypic, and functional characteristics of CD8+ T cells associated with the protection seen in asymptomatic (ASYMP) individuals, who, despite being infected, never experienced any recurrent herpetic disease, remains to be fully elucidated. In this investigation, we compared the phenotype, function, and level of expression of a comprehensive panel of 579 immune genes of memory CD8+ T cells, sharing the same HSV-1 epitope specificities, and freshly isolated peripheral blood from well-characterized cohorts of protected ASYMP and nonprotected symptomatic (SYMP) individuals, with a history of numerous episodes of recurrent herpetic disease, using the high-throughput digital NanoString nCounter system and flow cytometry. Interestingly, our results demonstrated that memory CD8+ T cells from ASYMP individuals expressed a unique set of genes involved in expansion and survival, type I interferon (IFN-I), and JAK/STAT pathways. Frequent multifunctional HSV-specific effector memory CD62Llow CD44high CD8+ TEM cells were detected in ASYMP individuals compared to more of monofunctional central memory CD62Lhigh CD44high CD8+ TCM cells in SYMP individuals. Shedding light on the genotype, phenotype, and function of antiviral CD8+ T cells from “naturally protected” ASYMP individuals will help design future T-cell-based ocular herpes immunotherapeutic vaccines. IMPORTANCE A staggering number of the world population harbors herpes simplex virus 1 (HSV-1) potentially leading to blinding recurrent herpetic disease. While the majority are asymptomatic (ASYMP) individuals who never experienced any recurrent herpetic disease, symptomatic (SYMP) individuals have a history of numerous episodes of recurrent ocular herpetic disease. This study elucidates the phenotype, the effector function, and the gene signatures of memory CD8+ T-cell populations associated with protection seen in ASYMP individuals. Frequent multifunctional HSV-specific effector memory CD8+ TEM cells were detected in ASYMP individuals. In contrast, nonprotected SYMP individuals had more central memory CD8+ TCM cells. The memory CD8+ TEM cells from ASYMP individuals expressed unique gene signatures characterized by higher levels of type I interferon (IFN), expansion and expansion/survival cytokines, and JAK/STAT pathways. Future studies on the genotype, phenotype, and function of antiviral CD8+ T cells from “naturally protected” ASYMP individuals will help in the potential design of T-cell-based ocular herpes vaccines.


2013 ◽  
Vol 43 (10) ◽  
pp. 2730-2740 ◽  
Author(s):  
Béatrice Corre ◽  
Julie Perrier ◽  
Margueritte El Khouri ◽  
Silvia Cerboni ◽  
Sandra Pellegrini ◽  
...  

2000 ◽  
Vol 12 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Linda Fahlén ◽  
Linda Öberg ◽  
Thomas Brännström ◽  
Nelson K. S. Khoo ◽  
Urban Lendahl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document