Tree-ring growth of Pinus nigra Arn. subsp. pallasiana under different climate conditions throughout western Anatolia

2012 ◽  
Vol 30 (4) ◽  
pp. 295-301 ◽  
Author(s):  
Nesibe Köse ◽  
Ünal Akkemik ◽  
Hasan Nüzhet Dalfes ◽  
Mehmet Sinan Özeren ◽  
Doğanay Tolunay
2021 ◽  
Author(s):  
Olga Churakova (Sidorova) ◽  
Marina Fonti ◽  
Rolf Siegwolf ◽  
Tatyana Trushkina ◽  
Eugene Vaganov ◽  
...  

<p>We use an interdisciplinary approach combining stable isotopes in tree rings, pollen data, ice cores from temperature-limited environment in the Siberian north and developed a comprehensive description of the climatic changes over the past 1500 years. We found that the Climatic Optimum Period was warmer and drier compared to the Medieval one, but rather similar to the recent period. Our results indicate that the Medieval Warm period in the Taimyr Peninsula started earlier and was wetter compared to the northeastern part of Siberia (northeastern Yakutia). Summer precipitation reconstruction obtained from carbon isotopes in tree-ring cellulose from Taimyr Peninsula significantly correlated with the pollen data of the Lama Lake (Andreev et al. 2004) and oxygen isotopes of the ice core from Severnaya Zemlya (Opel et al. 2013) recording wetter climate conditions during the Medieval Warm period compared to the northeastern part of Siberia. Common large-scale climate variability was confirmed by significant relationship between oxygen isotope data in tree-ring cellulose from the Taimyr Peninsula and northeastern Yakutia, and oxygen isotope ice core data from Severnaya Zemlja during the Medieval Warm period and the recent one. Finally, we showed that the recent warming on the Taimyr Peninsula is not unprecedented in the Siberian north. Similar climate conditions were recorded by stable isotopes in tree rings, pollen, and ice core data 6000 years ago. On the northeastern part of Siberia newly developed a 1500-year summer vapor pressure deficit (VPD) reconstruction showed, that VPD increased recently, but does not yet exceed the maximum values reconstructed during the Medieval Warm period. The most humid conditions in the northeastern part of Siberia were recorded in the Early Medieval period and during the Little Ice Age. However, the increasing VPD under elevated air temperature in the last decades affects the hydrological regime of these sensitive ecosystems by greater evapotranspiration rates. Further VPD increase will significantly affect Siberian forests most likely leading to drought even under additional access of thawed permafrost water.</p><p>This work was supported by the FP7-PEOPLE-IIF-2008 - Marie Curie Action: "International Incoming Fellowships" 235122 and "Reintegration Fellowships" 909122 “Climatic and environmental changes in the Eurasian Subarctic inferred from tree-ring and stable isotope chronologies for the past and recent periods” and the Government of Krasnoyarsk Kray and Russian Foundation for Basic Research and Krasnoyarsk Foundation 20-44-240001 “Adaptation of conifer forests on the north of the Krasnoyarsk region (Taimyr Peninsula) to climatic changes after extreme events over the past 1500 years“ awarded to Olga V. Churakova (Sidorova).</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 644 ◽  
Author(s):  
Pablo Casas-Gómez ◽  
Raúl Sánchez-Salguero ◽  
Pedro Ribera ◽  
Juan C. Linares

Extreme drought events are becoming increasingly frequent and extended, particularly in Mediterranean drought-prone regions. In this sense, atmospheric oscillations patterns, such as those represented by the North Atlantic Oscillation (NAO) index and the Westerly Index (WI) have been widely proven as reliable proxies of drought trends. Here, we used the Standardized Precipitation–Evapotranspiration Index (SPEI), as a reliable indicator of drought, to investigate the drought sensitivity of tree-ring width data (TRW) from several long-lived tree species (Abies borisii-regis, Abies cilicica, Abies pinsapo, Cedrus atlantica, Cedrus libanii, Pinus nigra, Pinus heldreichii). NAO and WI relations with TRW were also investigated in order to identify potential non-stationary responses among those drought proxies. Our temporal and spatial analyses support contrasting Mediterranean dipole patterns regarding the drought sensitivity of tree growth for each tree species. The spatial assessment of NAO and WI relationships regarding SPEI and TRW showed on average stronger correlations westward with non-stationary correlations between annual WI index and TRW in all species. The results indicate that the drought variability and the inferred drought-sensitive trees species (e.g., C. atlantica) are related to the NAO and the WI, showing that TRW is a feasible proxy to long-term reconstructions of Westerly Index (WI) variability in the Western Mediterranean region. Spatial variability of drought severity suggests a complex association between NAO and WI, likely modulated by an east–west Mediterranean climate dipole.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 889
Author(s):  
Zeynab Foroozan ◽  
Jussi Grießinger ◽  
Kambiz Pourtahmasi ◽  
Achim Bräuning

In semi-arid regions of the world, knowledge about the long-term hydroclimate variability is essential to analyze and evaluate the impact of current climate change on ecosystems. We present the first tree-ring δ18O based hydroclimatic reconstruction for northern semi-arid Iran spanning the period 1515–2015. A highly significant correlation between tree-ring δ18O variations of juniper trees and spring (April–June) precipitation reveals a major influence of spring water availability during the early growing season. The driest period of the past 501 years occurred in the 16th century while the 18th century was the wettest, during which the overall highest frequency of wet year events occurred. A gradual decline in spring precipitation is evident from the beginning of the 19th century, pointing to even drier climate conditions. The analysis of dry/wet events indicates that the frequency of years with relatively dry spring increased over the last three centuries, while the number of wet events decreased. Our findings are in accordance with historical Persian disaster records (e.g., the severe droughts of 1870–1872, 1917–1919; severe flooding of 1867, the 1930s, and 1950). Correlation analyses between the reconstruction and different atmospheric circulation indices revealed no significant influence of large-scale drivers on spring precipitation in northern Iran.


Author(s):  
V. R. Tsibulsky ◽  
I. G. Solovyev ◽  
D. A. Govorkov

The subject of this research is conifer growth model based on time-series of annual rings width. The article addresses processing of data and model update in respect of forest dendrology. The purpose of study is to update the conifer growth model due to expansion of time-series of tree-rings width in regards to conifer forests in Western Siberia. The method represents expansion of time-series due to the fact that some growth phases had not been taken into account. When measurements were taken at the height of 1.3 meters, the following phases were not considered: seedling, juvenile, immature and beginning of virginile phase. The authors carried out examination of a number of scans and core samples, as well as time-series received by other scientists and which are contained in the International Tree-Ring Data Bank. Based on the results of field studies, the authors recommend to add some zeroes to the beginning of time-series within the range of 10-15 years for pine-trees in the south of Western Siberia, depending on growth conditions; the range of 15-30 years in the north for larch-trees and pine-trees depending on soil and climate conditions and latitude. The sequence of data pre-processing operations for time-series, received by means of core sampling, is as follows: averaging out of radius gain in 2 (3) mutually perpendicular directions for one specimen, graphing of radius gain curve, adding to the beginning of time-series, its normalization, approximation by specified growth function. It is possible to build area growth function for the scans. For averaging out a group of model trees, the sequence of operations is as follows: synchronization of time-series by cross-correlation method, approximation by specified growth function. Methods and results of studies can be applied in forest sectors and oil and gas industries for monitoring of forest health conditions. The proposed method of curve growth model update will allow to define more precisely time intervals for efficient forest exploitation as well as to reconstruct digital models of conifer populations in the north of Western Siberia.


2021 ◽  
Author(s):  
Thomas Wieloch ◽  
Michael Grabner ◽  
Angela Augusti ◽  
Henrik Serk ◽  
Ina Ehlers ◽  
...  

- Stable isotope abundances convey valuable information about plant physiological processes and underlying environmental controls. Central gaps in our mechanistic understanding of hydrogen isotope abundances impede their widespread application within the plant and Earth sciences. - To close these gaps, we analysed intramolecular deuterium abundances in glucose of Pinus nigra extracted from an annually resolved tree-ring series (1961 to 1995). - We found fractionation signals at glucose H1 and H2 introduced by closely related metabolic processes. These signals (and thus metabolism) respond to drought and atmospheric CO2 concentration beyond a response change point. They explain ≈60% of the whole-molecule deuterium variability. Altered metabolism is associated with below-average yet not exceptionally low growth. - We propose the signals are introduced at the leaf-level by changes in sucrose-to-starch carbon partitioning and anaplerotic carbon flux into the Calvin-Benson cycle. In conclusion, metabolism can be the main driver of hydrogen isotope variation in plant glucose.


2021 ◽  
Author(s):  
Nazimul Islam ◽  
Torsten Vennemann ◽  
Stuart N. Lane

<p>Original dendrochronological research has developed rapidly over the last few decades to cover a wide range of environmental reconstruction, not only mean climate conditions but also climate extremes (e.g. floods, droughts) and other environmental hazards (e.g. landslides, debris flows, sea-level rise, volcanic eruptions). Similarly, the focus has expanded its geographical coverage from the temperate and high latitudes to lower latitudes (e.g.  the Himalaya, Tibet Plateau). Analysis of the two main dedicated dendrochronology journals (Dendrochronologia (2002-) and Tree Ring Research (2015-)) shows that the focus of the majority of published papers has been temperate and high latitudes and many fewer have considered lower latitudes such as the Himalaya. This may be due to the long-lasting controversy and doubt of the existence of tree-rings in lower latitude trees and the lower scientific acceptance of seasonal tree growth in such regions. However, such regions have some of the most preferred tree species (e.g. Larix griffithii, Abies spectabilis, Betula utilis, Juniperus polycarpos etc) for dendrochronological analysis making them suitable for tree-ring research and for answering questions regarding century-scale and longer environmental changes in regions with a relatively short history of instrumented recording of environmental parameters.</p><p>Perhaps the most interesting development in tree ring research is the realization that tree cellulose can be used to acquire information not only of climatic significance but also hydrological significance, by using environmental isotopes. To date, despite of being one of the most climate and geopolitically sensitive regions, the Himalaya has got very less or no attention for combined research of isotopes and anatomical analysis of tree rings. Based on its huge significance, it is critical to combine these two methods to allow us to make linkages between historical climate fluctuations and associated hydrological response. In this poster, we present the conception of a project to do this in a large catchment (4264 km<sup>2</sup>) in the Sikkim Himalaya with the purpose to understand how climate change is simultaneously impacting both water-related risks and water-related resources and crucially how far downstream which is highly significant as millions of people living downstream get freshwater from the seasonal snow and glacier-melt in this part of the Himalayas.</p>


2020 ◽  
Author(s):  
Valentina Vitali ◽  
Rosemarie Weigt ◽  
Stefan Klesse ◽  
Kerstin Treydte ◽  
Rolf Siegwolf ◽  
...  

<p>Picea abies and Fagus sylvatica, are two of the most important tree species in Europe, and their responses to climate are being extensively investigated, especially at the limits of their distribution. However, their physiology at temperate sites is not yet fully understood. In a European tree-ring network, 10 sites along a climate gradient were sampled throughout Central Europe, and tree-ring width and stable isotope chronologies (C and O) were measured. The year-to-year variability of the isotopes time series for the last 100 years was analyzed in relation to tree-ring growth, spatial distribution, and seasonal climate.</p><p>Climate sensitivity of radial growth of both species was rather variable and site-dependent, and was strongest at the driest sites. On the contrary, variability in the isotopic ratios consistently responded to summer climate, particularly to vapor pressure deficit. The high δ<sup>18</sup>O coherence of the short-term variability between sites and species highlights the strength of the environmental signal in the O chronology also across long distances. On the contrary, δ<sup>13</sup>C shows lower correlations between sites and species, showing a stronger site-dependency, and a lower intra-annual variability. The generally positive correlation between the year-to-year differences in δ<sup>13</sup>C and δ<sup>18</sup>O across most sites demonstrates the strong role of stomatal conductance in controlling leaf gas exchange for these species. However, in the last decades, sites showed a dissimilar shift in the isotopes relationships, with the warmer sites showing an increase of either or both δ<sup>13</sup>C and δ<sup>18</sup>O and consequent decrease of photosynthetic rates and stomatal conductance, highlighting their dependency to atmospheric moisture demand and soil water availability.</p><p>Understanding the underlying physiological mechanisms controlling the short-term variation in tree-ring records will help with defining the performance of these ecologically and economically important tree species under future climate conditions.</p>


2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Elvin Toromani ◽  
Edmond Pasho ◽  
Arben Q. Alla ◽  
Vasillaq Mine ◽  
Nehat Çollaku

Abstract In this study are presented chronologies of earlywood (EW), latewood (LW) and tree-ring widths (RW) of a Pinus halepensis (P. halepensis) and Pinus pinea (P. pinea) natural forest stand growing in western Albania. Bootstrapped correlations and pointer year analysis were combined in a dendroclimatological study to evaluate climate-growth relationships in both pine species as well as to assess the spatial outreach of our chronologies evaluating them with those of the same species from other Mediterranean countries. We found that both species responded positively to precipitation and Indexed Percentage Average Precipitation (%AvP) in late summer-early autumn, particularly the LW, whereas summer temperatures constrained the growth of P. halepensis tree-ring features. Current January temperature and Potential Evapotranspiration (PET) showed positive relationship with P. pinea LW and RW. The same association was observed when considering PET in spring and P. halepensis LW and RW. Pointer year analysis showed that inhibitory climatic drivers of radial growth for both species were low precipitation from previous winter and current summer, associated with low temperatures during autumn. Our P. halepensis chronology showed a wider spatial outreach than that of P. pinea when compared to those from other Mediterranean countries. We conclude that current January temperatures and September precipitation are very important for P. pinea growth influencing both EW and LW growth whereas P. halepensis is mostly affected by the summer-early autumn climate conditions.


Sign in / Sign up

Export Citation Format

Share Document