scholarly journals Data on spatio-temporal representation of mineral N fertilization and manure N application as well as ammonia volatilization in French regions for the crop year 2005/06

Data in Brief ◽  
2018 ◽  
Vol 21 ◽  
pp. 1119-1124
Author(s):  
Sophie Génermont ◽  
Maharavo Marie Julie Ramanantenasoa ◽  
Karine Dufosse ◽  
Olivier Maury ◽  
Catherine Mignolet ◽  
...  
2007 ◽  
Vol 87 (3) ◽  
pp. 565-569 ◽  
Author(s):  
Laura L Van

The effects of increasing nitrogen (N) fertilization on N use efficiency (NUE) and yield of green bell pepper were assessed in five field experiments over 2004 and 2005. These data were used to evaluate and contrast conclusions drawn from among 12 different NUE indices. In two diferent years (i.e., cool/wet vs. warm/dry), marketable yield response to N application was either positive or no response was observed. Total percent N in the fruit and shoot was lower in non-fertilized plants compared with plants grown in plots that received 70 or 210 kg N ha-1. There were considerable differences among locations in soil mineral N, yield, NUE, and plant N uptake and removal. For all eight fertilizer- and soil-based NUE indices assessed, NUE decreased as N application increased. However, for plant-based NUE indices, there was no difference in NUE values between N treatments. Thus, the interpretation and applicability of NUE depends on the goals of the research and the index used. Key words: Nutrient use efficiency, green bell peppers, harvest index, nitrogen, fertilizer, vegetable


2018 ◽  
Vol 17 (1) ◽  
pp. 57-72
Author(s):  
Damiano Malafronte ◽  
Ernesto De Vito ◽  
Francesca Odone

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1300
Author(s):  
Janusz Prusiński ◽  
Anna Baturo-Cieśniewska ◽  
Magdalena Borowska

A growing interest in soybean cultivation in Poland has been observed in the recent years, however it faces a lot of difficulties resulting from a poorly understood effectiveness of plant nitrogen fertilization and from the introduction of Bradyrhizobium japonicum to the environment. The aim of the study was to evaluate the consistency of response of two soybean cultivars to three different rates of mineral N fertilization and two seed inoculation treatments with B. japonicum in field conditions over four years regardless of previous B. japonicum presence in the soil. A highly-diversified-over-years rainfall and temperature in the growing season do not allow for a definite statement of the differences resulting from seed inoculation and mineral N fertilization applied separately or jointly in soybean. A high sensitivity of the nodulation process to rainfall deficits was noted, which resulted in a decreased amount of B. japonicum DNA measured in qPCR and dry matter of nodules. ‘Annushka’ demonstrated a higher yield of seeds and protein, higher plants and the 1st pod setting. ‘Aldana’, due to a significant decrease in plant density, produced a higher number of pods, seeds per pod and the 1000 seed weight per plant. Both cultivars responded with an increase in the seed yield after seed inoculation with HiStick, also with an application of 30 and 60 kg N, as well as with Nitragina with 60 kg N.


1991 ◽  
Vol 71 (3) ◽  
pp. 943-946 ◽  
Author(s):  
S. Freyman ◽  
P. M. Toivonen ◽  
W. C. Lin ◽  
P. W. Perrin ◽  
J. W. Hall

Increasing rates of field nitrogen (N) application (0, 100, 200, 300, 400 and 500 kg N ha−1) resulted in markedly higher yields of winter white cabbage (Brassica oleracea L. var. capitata 'Bartolo') due to larger head size. Glucose and fructose contents increased with increased nitrogen. In contrast, ascorbic acid and sucrose contents declined slightly with increased nitrogen. Nitrogen rate had little effect on storage losses. The results indicated that increased N fertilization provided overall benefit to cabbage production. Key words: Cabbage, nitrogen fertilization, storage losses, yield


Revista CERES ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Thiago de Oliveira Vargas ◽  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Alysson Roberto de Almeida ◽  
Segundo Urquiaga ◽  
...  

Roots effect is not generally considered in studies assessing the performance of crops in response to green manuring. However, such effect can contribute to a better understanding of crop rotation. The aim of this study was to assess the effect of root and shoot of two legumes on the production of cabbage. The experiment was conducted in pots of 10 liters containing substrate of 2:1 soil/sand. The experiment was arranged in a factorial scheme (2x3 + 2) in a randomized block design with five replicates using two legume species (Crotalaria juncea L. and Canavalia ensiformis L), three plant parts (root, shoot, or whole plant), and two additional treatments (mineral fertilization with 100% and 50% of the recommended dose of N for growing cabbage). Pots with legume treatments received mineral fertilizer with 50% of the recommended dose of N for growing cabbage. The experimental plot consisted of a pot containing one plant of cabbage. Legumes were grown in pots and harvested at 78 days. The root biomass was determined in extra pots. Production was assessed using head fresh and dry weight. The application of the whole plant of both legume species reduced cabbage production. However, root or shoot of both legume species was equivalent to 50% of mineral N fertilization required for the cultivation of cabbage.


2010 ◽  
Vol 34 (5) ◽  
pp. 1677-1684 ◽  
Author(s):  
Sandra Mara Vieira Fontoura ◽  
Cimélio Bayer

Ammonia (NH3) volatilization can reduce the efficiency of urea applied to the surface of no-till (NT) soils. Thus, the objectives of this study were to evaluate the magnitude of NH3 losses from surface-applied urea and to determine if this loss justifies the urea incorporation in soil or its substitution for other N sources under the subtropical climatic conditions of South-Central region of Paraná State, Brazil. The experiment, performed over four harvesting seasons in a clayey Hapludox followed a randomized block design with four replicates. A single dose of N (150 kg ha-1) to V5 growth stage of corn cultivated under NT system was applied and seven treatments were evaluated, including surface-applied urea, ammonium sulfate, ammonium nitrate, urea with urease inhibitor, controlled-release N source, a liquid N source, incorporated urea, and a control treatment with no N application. Ammonia volatilization was evaluated for 20 days after N application using a semi-open static system. The average cumulative NH3 loss due to the superficial application of urea was low (12.5 % of the applied N) compared to the losses observed in warmer regions of Southeastern Brazil (greater than 50 %). The greatest NH3 losses were observed in dry years (up to 25.4 % of the applied N), and losses decreased exponentially as the amount of rainfall after N application increased. Incorporated urea and alternative N sources, with the exception of controlled-release N source, decreased NH3 volatilization in comparison with surface-applied urea. Urea incorporation is advantageous for the reduction of NH3 volatilization; however, other aspects as its low operating efficiency should be considered before this practice is adopted. In the South-Central region of Paraná, the low NH3 losses from the surface-applied urea in NT system due to wet springs and mild temperatures do not justify its replacement for other N sources.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 366
Author(s):  
Silit Lazare ◽  
Yang Lyu ◽  
Uri Yermiyahu ◽  
Yehuda Heler ◽  
Alon Ben-Gal ◽  
...  

Quantification of actual plant consumption of nitrogen (N) is necessary to optimize fertilization efficiency and minimize contamination of earth resources. We examined the performance of fruit-bearing pomegranate trees grown in soilless media and exposed to eight N-fertigation treatments, from 5 to 200 mg N L−1. Reproductive and vegetative indices were found to be optimal when 20 to 70 mg N L−1 was supplied. Nitrogen application levels over 70 mg L−1 reduced pomegranate development and reproduction. N uptake in low-level treatments was almost 100% and decreased gradually, down to 13% in 200 mg N L−1 treatment. N usage efficiency was maximized under 20 mg N L−1, in which case 80% to 90% of added N was taken up by the trees. At high N application, its efficiency was reduced with less than 50% utilized by the trees. Leaf N increased to a plateau as a function of increasing irrigation solution N, maximizing at ~15 to 20 mg N g−1. Therefore, analysis of diagnostic leaves is not a valid method to identify excessive detrimental N. The results should be valuable in the development of efficient, sustainable, environmentally responsible protocols for N fertilization in commercial pomegranate orchards, following adaptation and validation to real soil field conditions.


2012 ◽  
Vol 36 (2) ◽  
pp. 475-483 ◽  
Author(s):  
José Hildernando Bezerra Barreto ◽  
Ismail Soares ◽  
José Almeida Pereira ◽  
Antonio Marcos Esmeraldo Bezerra ◽  
José Aridiano Lima de Deus

Nitrogen is the most important nutrient for rice (Oryza sativa L) yields. This study aimed to evaluate the response of upland rice cultivars to N rate and application times in a randomized block design, in subdivided plots with four replications. The studied factors were five rice cultivars (BRS MG Curinga, BRS Monarca, BRS Pepita, BRS Primavera, and BRS Sertaneja), three application times (100 % at planting, 50 % at planting - 50 % at tillering and 100 % at tillering) and four N rates (0, 50, 100, and 150 kg ha-1). All cultivars responded to increased rates and different times of N application, especially BRS Primavera and BRS Sertaneja, which were the most productive when 50 % N rates were applied at sowing and 50 % at tillering. The response of cultivar BRS Monarca to N fertilization was best when 100 % of the fertilizer was applied at tillering.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2396
Author(s):  
Muhammad Yaseen ◽  
Adeel Ahmad ◽  
Muhammad Naveed ◽  
Muhammad Asif Ali ◽  
Syed Shahid Hussain Shah ◽  
...  

Nitrogen (N) is an essential plant nutrient, therefore, N-deficient soils affect plant growth and development. The excessive and unwise application of N fertilizers result in nutrient losses and lower nutrient use efficiency that leads to the low crop productivity. Ammonia volatilization causes a major loss after N fertilization that causes environmental pollution. This experiment was conducted to evaluate the effectiveness of coating and uncoating N fertilizer in enhancing yield and nutrient-use efficiency with reduced ammonia emissions. The recommended rate of nitrogen and phosphorus, urea and di-ammonium phosphate (DAP) fertilizers were coated manually with 1% polymer solution. DAP (coated/uncoated) and potassium were applied at the time of sowing as subsurface application. While urea (coated/uncoated) was applied as surface and subsurface application. Results showed that nutrient use efficiencies of wheat were found to be maximum with the subsurface application of coated N fertilizer which increased nutrient-use efficiency by 44.57 (N), 44.56 (P) and 44.53% (K) higher than the surface application of uncoated N fertilizer. Ammonia emissions were found the lowest with subsurface-applied coated N fertilizer. Thus, coated fertilizer applied via subsurface was found the best technique to overcome the ammonia volatilization with an improvement in the yield and nutrient-use efficiency of wheat.


Sign in / Sign up

Export Citation Format

Share Document