Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair

DNA Repair ◽  
2007 ◽  
Vol 6 (5) ◽  
pp. 626-638 ◽  
Author(s):  
María E. Scassa ◽  
Mariela C. Marazita ◽  
Julieta M. Ceruti ◽  
Abel L. Carcagno ◽  
Pablo F. Sirkin ◽  
...  
2018 ◽  
Vol 475 (24) ◽  
pp. 3997-4010 ◽  
Author(s):  
Carrie Draney ◽  
Matthew C. Austin ◽  
Aaron H. Leifer ◽  
Courtney J. Smith ◽  
Kyle B. Kener ◽  
...  

The homeobox transcription factor Nkx6.1 is sufficient to increase functional β-cell mass, where functional β-cell mass refers to the combination of β-cell proliferation, glucose-stimulated insulin secretion (GSIS) and β-cell survival. Here, we demonstrate that the histone deacetylase 1 (HDAC1), which is an early target of Nkx6.1, is sufficient to increase functional β-cell mass. We show that HDAC activity is necessary for Nkx6.1-mediated proliferation, and that HDAC1 is sufficient to increase β-cell proliferation in primary rat islets and the INS-1 832/13 β-cell line. The increase in HDAC1-mediated proliferation occurs while maintaining GSIS and increasing β-cell survival in response to apoptotic stimuli. We demonstrate that HDAC1 overexpression results in decreased expression of the cell cycle inhibitor Cdkn1b/p27 which is essential for inhibiting the G1 to S phase transition of the cell cycle. This corresponds with increased expression of key cell cycle activators, such as Cyclin A2, Cyclin B1 and E2F1, which are activated by activation of the Cdk4/Cdk6/Cyclin D holoenzymes due to down-regulation of Cdkn1b/p27. Finally, we demonstrate that overexpression of Cdkn1b/p27 inhibits HDAC1-mediated β-cell proliferation. Our data suggest that HDAC1 is critical for the Nkx6.1-mediated pathway that enhances functional β-cell mass.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1638-1648 ◽  
Author(s):  
Lisa K. Mullany ◽  
Zhilin Liu ◽  
Erin R. King ◽  
Kwong-Kwok Wong ◽  
JoAnne S. Richards

Loss of Pten in the KrasG12D;Amhr2-Cre mutant mice leads to the transformation of ovarian surface epithelial (OSE) cells and rapid development of low-grade, invasive serous adenocarcinomas. Tumors occur with 100% penetrance and express elevated levels of wild-type tumor repressor protein 53 (TRP53). To test the functions of TRP53 in the Pten;Kras (Trp53+) mice, we disrupted the Trp53 gene yielding Pten;Kras(Trp53−) mice. By comparing morphology and gene expression profiles in the Trp53+ and Trp53− OSE cells from these mice, we document that wild-type TRP53 acts as a major promoter of OSE cell survival and differentiation: cells lacking Trp53 are transformed yet are less adherent, migratory, and invasive and exhibit a gene expression profile more like normal OSE cells. These results provide a new paradigm: wild-type TRP53 does not preferentially induce apoptotic or senescent related genes in the Pten;Kras(Trp53+) cancer cells but rather increases genes regulating DNA repair, cell cycle progression, and proliferation and decreases putative tumor suppressor genes. However, if TRP53 activity is forced higher by exposure to nutlin-3a (a mouse double minute-2 antagonist), TRP53 suppresses DNA repair genes and induces the expression of genes that control cell cycle arrest and apoptosis. Thus, in the Pten;Kras(Trp53+) mutant mouse OSE cells and likely in human TP53+ low-grade ovarian cancer cells, wild-type TRP53 controls global molecular changes that are dependent on its activation status. These results suggest that activation of TP53 may provide a promising new therapy for managing low-grade ovarian cancer and other cancers in humans in which wild-type TP53 is expressed.


2012 ◽  
Vol 30 (5_suppl) ◽  
pp. 106-106
Author(s):  
Robert Benjamin Den ◽  
Steve Ciment ◽  
Ankur Sharma ◽  
Hestia Mellert ◽  
Steven McMahon ◽  
...  

106 Background: Prostate cancer is the most frequently diagnosed malignancy and the second leading cause of cancer death in U.S. men. The retinoblastoma tumor suppressor protein, RB, plays a critical role in cell cycle regulation and loss of RB has been observed in 25-30% of prostate cancers. We have previously shown that RB loss results in a castrate resistant phenotype, however the consequences of RB status with regard to radiation response are unknown. We hypothesized that RB loss would downregulate the G1-S cell cycle checkpoint arrest normally induced by irradiation, inhibit DNA repair, and subsequently sensitize cells to ionizing radiation. Methods: Experimental work was performed with multiple isogenic prostate cancer cell lines (hormone sensitive: LNCaP and LAP-C4 cells and hormone resistant C42, 22Rv1 cells; stable knockdown of RB using shRNA). Gamma H2AX assays were used to quantitate DNA damage and PARP cleavage and Caspase 3 were used to quantitate apoptosis. FACS analysis with BrdU was used to assess the cell cycle. Cell survival was measured using the clonogenic cell survival assay. In vivo work was performed in nude mice with tumor xenografts. Results: We observed that loss of RB increased radioresponsiveness in both transient and clonogenic cell survival assays in both hormone sensitive and castrate resistant cell lines (p<0.05). Cell death was not mediated through increased apoptosis nor was perturbations in cell cycle noted. However, loss of RB effected DNA repair as measured by gamma H2AX staining as well as cellular senescence. In vivo xenografts of the RB deficient tumors exhibited diminished tumor mass, lower PSA kinetics and decreased tumor growth after treatment with single fraction of ionizing radiation in comparison to RB intact tumors (p<0.05). Conclusions: Loss of RB results in a differential response to ionizing radiation. Isogenic cells with RB knockdown are more sensitive to DNA damage and result in reduced cell survival. The underlying mechanism appears to be related to DNA damage repair and cellular senescence.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2647-2647
Author(s):  
Terry J. Gaymes ◽  
S. Shall ◽  
Farzin Farzaneh ◽  
Ghulam J. Mufti

Abstract Recent reports suggest that BrCA1−/− and BrCA2−/− cells can be selectively targeted for cell death through abrogation of their PARP activity. It is postulated that as a result of PARP inhibition, accumulation of single strand DNA breaks (SSB) leads to the replication fork collapse and conversion of SSB to double strand DNA breaks (DSB). The inability of repair defective cells such as BrCA2−/− to repair the DSB would lead to cell death. Exploitation of DNA repair defects using PARP inhibitors (PI) thus represents a more specific and less toxic form of therapy for a number of haematological malignancies. Chromosomal instability (CI) syndromes that have inherent defects in double strand DNA repair also have a uniformly high incidence of transformation to acute leukaemia or lymphoma. In order to test the efficacy of PI therapy we analysed CI cell lines, myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML) cell lines and the potential for combination therapy with inhibitors of DNA methyltransferase (DNMTi) or histone deacetylase inhibitors (HDACi). We report that cells from CI syndromes; Blooms syndrome, Fanconi Anaemia (FancD2 and FancA), Ataxia telancgectasia and Nijmegen break syndrome display abnormal cell cycle profiles and excessive apoptosis in response to the PI’s PJ34 (3μM) and EB47 (45μM). In contrast, normal control cells displayed standard cell cycle profiles and no apoptosis in response to PI at equivalent concentrations. Clonogenic cytotoxicity assays showed that CI syndrome cells exhibit between 30–75% cell survival compared with 100% cell survival in control cells (p<0.05) in response to PI. The homologous recombination (HR) DNA repair component, rad51 forms foci in response to DNA damage. In HR compromised cells, rad51 foci fail to form. In response to PI, immunofluorescent studies show that CI syndrome cells demonstrate severely reduced rad51 foci formation (<5%) compared to control cells (15%). This confirms that PI targets the HR deficiencies in CI syndrome cells. Histone γH2AX, phosphorylated in response to DSB had greatly increased foci formation in CI syndrome cells compared to control cells as a result of unrepaired DNA damage (25.3 vs 9.3%)(p<0.05). CI syndromes have increased transformation potential to the MDS and AML. Addition of 3μM PJ34 to the myelomonocytoid leukaemic/myelodysplastic cell line, P39 exhibited significant apoptosis, with a cell survival fraction of 65% compared to 100% in control cells (p<0.01). Immunofluorescent studies revealed reduced rad51 foci formation (6.3 vs 15%) and increased γH2AX foci formation (17.6 vs 9.3%)(p<0.01). Strikingly, we were also able to reproduce similar PI responses in the Jurkat T-cell leukaemic cell line. We next explored the use of PI in combination with DNMTi or HDACi. Whilst 3μM PJ34 offered only additive effects on decitabine cytotoxicity, a sub-optimal concentration (1μM) of PJ34 behaved synergistically with HDACi potentiating the cytotoxic effect of 200nM MS275 by 55% compared to MS275 alone (p<0.05) in P39 cells. In conclusion, we have shown that in a panel of CI syndrome and leukaemic cells, PI demonstrates significant cytotoxic responses. We also show that PI acts synergistically in combination with HDACi. Parp inhibitors can potentially exploit DSB repair defects in leukaemic cells paving the way for a targeted therapy for MDS and leukaemia.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2974-2974 ◽  
Author(s):  
Terry J Gaymes ◽  
Sydney Shall ◽  
Farzin Farzaneh ◽  
Ghulam J Mufti

Abstract It has been previously reported that cells defective for double strand break (dsb) DNA repair can be selectively targeted for apoptosis through abrogation of their PARP activity. It has also been reported that leukemic cells have inherent defects in dsb DNA repair. Exploitation of DNA repair defects using PARP inhibitors (PI) thus represents a specific and less toxic form of therapy for a number of hematological malignancies. In order to test the efficacy of PI therapy we analysed primary cells from acute myeloid leukemia (AML) patients and the potential for combination therapy with inhibitors of DNA methyltransferase (DNMTi) or histone deacetylase inhibitors (HDACi). We report that from a panel of 12 AML patients, 2 AML patient cells demonstrated abnormal cell cycle profiles and apoptosis in response to the PI, KU-0058948 (1μM). In contrast, normal control cells displayed standard cell cycle profiles and no apoptosis in response to PI. Clonogenic cytotoxicity assays also showed that these PI sensitive AML patient cells exhibited between 45–55% cell survival compared with 100% cell survival in control cells (p&lt;0.05) in response to PI. The homologous recombination (HR) DNA repair component, rad51 forms foci in response to DNA damage. In HR compromised cells, rad51 foci fail to form. In response to PI, immunofluorescent studies show that the 2 PI sensitive AML patients cells demonstrated severely reduced rad51 foci formation (&lt;1%) compared to PI insensitive and normal control cells (15%). This confirmed that PI targets the HR deficiencies in PI sensitive cells. Histone H2AX, phosphorylated in response to DSB had greatly increased foci formation in PI sensitive cells compared to PI insensitive control cells as a result of unrepaired DNA damage (32.3 vs 19.3%)(p&lt;0.05). We next explored the use of PI in combination with DNMTi or HDACi. Whilst KU-0058948 offered only additive effects on DNMTi cytotoxicity, a non-cytotoxic concentration of KU-0058948 (10nM) behaved synergistically with HDACi potentiating the cytotoxic effect of MS275 by 45% compared to MS275 alone (p&lt;0.05). Furthermore, non-cytotoxic doses of MS275 (50nM) potentiated the cytotoxic effects of KU-0058948 in PI sensitive cells (25–30%) compared to KU-0058948 alone (P&lt;0.05). In conclusion, we have shown that primary AML cells are sensitive to the cytotoxic actions of PI. We have also showed that PI acts synergistically in combination with HDACi. PARP inhibitors can potentially exploit dsb repair defects in leukemic cells paving the way for a targeted therapy for leukemia.


2006 ◽  
Vol 175 (4S) ◽  
pp. 317-317
Author(s):  
Xifeng Wu ◽  
Jian Gu ◽  
H. Barton Grossman ◽  
Christopher I. Amos ◽  
Carol Etzel ◽  
...  

Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
T Lüdtke ◽  
H Farin ◽  
C Rudat ◽  
K Schuster-Gossler ◽  
M Petry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document