scholarly journals Iron/aluminum nanocomposites prepared by one-step reduction method and their effects on thermal decomposition of AP and AN

2021 ◽  
Author(s):  
Yong Kou ◽  
Yi Wang ◽  
Jun Zhang ◽  
Kai-ge Guo ◽  
Xiao-lan Song
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1097
Author(s):  
Luran Zhang ◽  
Xinchen Du ◽  
Hongjie Lu ◽  
Dandan Gao ◽  
Huan Liu ◽  
...  

L10 ordered FePt and FePtCu nanoparticles (NPs) with a good dispersion were successfully fabricated by a simple, green, one-step solid-phase reduction method. Fe (acac)3, Pt (acac)2, and CuO as the precursors were dispersed in NaCl and annealed at different temperatures with an H2-containing atmosphere. As the annealing temperature increased, the chemical order parameter (S), average particle size (D), coercivity (Hc), and saturation magnetization (Ms) of FePt and FePtCu NPs increased and the size distribution range of the particles became wider. The ordered degree, D, Hc, and Ms of FePt NPs were greatly improved by adding 5% Cu. The highest S, D, Hc, and Ms were obtained when FePtCu NPs annealed at 750 °C, which were 0.91, 4.87 nm, 12,200 Oe, and 23.38 emu/g, respectively. The structure and magnetic properties of FePt and FePtCu NPs at different annealing temperatures were investigated and the formation mechanism of FePt and FePtCu NPs were discussed in detail.


2017 ◽  
Vol 899 ◽  
pp. 173-178 ◽  
Author(s):  
Ronydes Batista Jr. ◽  
Bruna Sene Alves Araújo ◽  
Pedro Ivo Brandão e Melo Franco ◽  
Beatriz Cristina Silvério ◽  
Sandra Cristina Danta ◽  
...  

In view of the constant search for new sources of renewable energy, the particulate agro-industrial waste reuse emerges as an advantageous alternative. However, despite the advantages of using the biomass as an energy source, there is still strong resistance as the large-scale replacement of petroleum products due to the lack of scientifically proven efficient conversion technologies. In this context, the pyrolysis is presented as one of the most widely used thermal decomposition processes. The knowledge of aspects of chemical kinetics, thermodynamics these will, heat and mass transfer, are so important, since influence the quality of the product. This paper presents a kinetic study of slow pyrolysis of coffee grounds waste from dynamic thermogravimetric experiments (TG), using different powder catalysts. The primary thermal decomposition was described by the one-step reaction model, which considers a single global reaction. The kinetic parameters were estimated using nonlinear regression and the differential evolution method. The coffee ground waste was dried at 105°C for 24 hours. The sample in nature was analyzed at different heating rates, being 10, 15, 20, 30 and 50 K/min. In the catalytic pyrolysis, about 5% (w/w) of catalyst were added to the sample, at a heating rate of 30 K/min. The results show that the one-step model does not accurately represent the data of weight loss (TG) and its derivative (DTG), but can do an estimative of the activation energy reaction, and can show the differences caused by the catalysts. Although no one can say anything about the products formed with the addition of the catalyst, it would be necessary to micro-pyrolysis analysis, we can say the influence of the catalyst in the samples, based on the data obtained in thermogravimetric tests.


2017 ◽  
Vol 4 (10) ◽  
pp. 1691-1696 ◽  
Author(s):  
Mumei Han ◽  
Huibo Wang ◽  
Siqi Zhao ◽  
Lulu Hu ◽  
Hui Huang ◽  
...  

10%CoO/g-C3N4 exhibits good photocatalytic performance under visible light irradiation without any sacrificial reagents.


2018 ◽  
Vol 27 (1) ◽  
pp. 158-164 ◽  
Author(s):  
Qingfei Duan ◽  
Linghan Meng ◽  
Hongsheng Liu ◽  
Long Yu ◽  
Kai Lu ◽  
...  

2020 ◽  
Vol 993 ◽  
pp. 646-653
Author(s):  
Shao Hui Liu ◽  
Yu Zhao ◽  
Xu Ran

In order to improve the interfacial bonding between graphene and copper and improve the dispersibility of graphene in the copper matrix, a novel method was used to prepare graphene. Firstly, graphene oxide (GO) was prepared by the modified Hummer's method, and then the reduced graphene oxide-supported cobalt nanoparticle composite powder (Co@RGO) was prepared by one-step in-situ reduction method. The fabricated materials were mixed with copper powder to obtain various volume fractions. The powder mixture was subjected to compression and discharge plasma sintering (SPS) to prepare a bulk copper-based composite material. The microstructure and its comprehensive properties were studied by SEM, TEM, XRD, FTIR and Raman. The results show that the agglomeration of graphene can be effectively inhibited after the cobalt nanoparticles supported on the graphene surface. The proper amount of Co@RGO could be uniformly dispersed in the copper matrix. The composite material showed a high electrical conductivity (>86% IACS), and the Vickers hardness also increased by about 30% compared with pure copper.


2018 ◽  
Vol 6 (18) ◽  
pp. 8233-8237 ◽  
Author(s):  
Qun Li ◽  
Dewen Wang ◽  
Ce Han ◽  
Xiao Ma ◽  
Qingqing Lu ◽  
...  

Here, we describe the synthesis of a novel interwoven NiS/NiS2 structure with an amorphous interface accomplished by carrying out a one-step thermal decomposition of nickel sulfate and thiourea.


2019 ◽  
Vol 56 (3) ◽  
pp. 803-809 ◽  
Author(s):  
Eleanor Olegario ◽  
Jenichi Clairvaux Felizco ◽  
Christian Mark Pelicano ◽  
Herman Mendoza ◽  
Hideki Nakajima

2015 ◽  
Vol 39 (11) ◽  
pp. 8703-8707 ◽  
Author(s):  
Qi Li ◽  
Yi He ◽  
Rufang Peng

SnO2NPs/g-C3N4 hybrids can effectively catalyze NH4ClO4 molecules by the aid of a synergistic reaction of SnO2.


Sign in / Sign up

Export Citation Format

Share Document