scholarly journals Whole transcriptome-based ceRNA network analysis revealed ochratoxin A-induced compromised intestinal tight junction proteins through WNT/Ca2+ signaling pathway

2021 ◽  
Vol 224 ◽  
pp. 112637
Author(s):  
Xue Yang ◽  
Yanan Gao ◽  
Shengnan Huang ◽  
Chuanyou Su ◽  
Jiaqi Wang ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Junrui Cheng ◽  
Emilio Balbuena ◽  
Baxter Miller ◽  
Abdulkerim Eroglu

Background: Carotenoids are naturally occurring pigments accounting for the brilliant colors of fruits and vegetables. They may display antioxidant and anti-inflammatory properties in humans besides being precursors to vitamin A. There is a gap of knowledge in examining their role within colonic epithelial cells. We proposed to address this research gap by examining the effects of a major dietary carotenoid, β-carotene, in the in vitro epithelial cell model.Methods: We examined the function of β-carotene in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway. We conducted western blotting assays to evaluate expressions of TLR4 and its co-receptor, CD14. We also examined NF-κB p65 subunit protein levels in the model system. Furthermore, we studied the impact of β-carotene on the tight junction proteins, claudin-1, and occludin. We further carried out immunocytochemistry experiments to detect and visualize claudin-1 expression.Results: β-Carotene reduced LPS-induced intestinal inflammation in colonic epithelial cells. β-Carotene also promoted the levels of tight junction proteins, which might lead to enhanced barrier function.Conclusions: β-Carotene could play a role in modulating the LPS-induced TLR4 signaling pathway and in enhancing tight junction proteins. The findings will shed light on the role of β-carotene in colonic inflammation and also potentially in metabolic disorders since higher levels of LPS might induce features of metabolic diseases.


2018 ◽  
Vol 47 (4) ◽  
pp. 1617-1629 ◽  
Author(s):  
Wenqian Feng ◽  
Yancheng Wu ◽  
Guangxin Chen ◽  
Shoupeng Fu ◽  
Bai Li ◽  
...  

Background/Aims: Butyric acid plays an important role in maintaining intestinal health. Butyric acid has received special attention as a short-chain fatty acid, but its role in protecting the intestinal barrier is poorly characterized. Butyric acid not only provides energy for epithelial cells but also acts as a histone deacetylase inhibitor; it is also a natural ligand for G protein-coupled receptor 109A (GPR109A). A GPR109A analog was expressed in Sus scrofa and mediated the anti-inflammatory effects of beta-hydroxybutyric acid. This study investigated the effects of butyrate on growth performance, diarrhea symptoms, and tight junction protein levels in 21-day-old weaned piglets. We also studied the mechanism by which butyric acid regulates intestinal permeability. Methods: Twenty-four piglets that had been weaned at an age of 21 days were divided randomly into 2 equal groups: basal diet group and sodium butyrate + basal diet group. Diarrhea rate, growth performance during 3 weeks of feeding on these diets were observed, the lactulose-mannitol ratio in urine were detected by High Performance Liquid Chromatography, the expression levels of tight junction proteins in the intestinal tract and related signaling molecules, such as GPR109A and Akt, in the colon were examined by quantitative real-time PCR or western blot analyses on day 21. Caco-2 cells were used as a colon cell model and cultured with or without sodium butyrate to assess the expression of tight junction proteins and the activation of related signaling molecules. GPR109A-short hairpin RNA (shRNA) and specific antagonists of Akt and ERK1/2 were used as signaling pathway inhibitors to elucidate the mechanism by which butyric acid regulates the expression of tight junction proteins and the colonic epithelial barrier. Results: The sodium butyrate diet alleviated diarrhea symptoms and decreased intestinal permeability without affecting the growth of early weaned piglets. The expression levels of the tight junction proteins Claudin-3, Occludin, and zonula occludens 1 were up-regulated by sodium butyrate in the colon and Caco-2 cells. GPR109A knockdown using shRNA or blockade of the Akt signaling pathway in Caco-2 cells suppressed sodium butyrate-induced Claudin-3 expression. Conclusions: Sodium butyrate acts on the Akt signaling pathway to facilitate Claudin-3 expression in the colon in a GPR109A-dependent manner.


2005 ◽  
Vol 43 (05) ◽  
Author(s):  
Cs Páska ◽  
E Orbán ◽  
A Kiss ◽  
Zs Schaff ◽  
A Szijjártó ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document