Resolving model parameter values from carbon and nitrogen stock measurements in a wide range of tropical mature forests using nonlinear inversion and regression trees

2008 ◽  
Vol 219 (3-4) ◽  
pp. 327-341 ◽  
Author(s):  
Shuguang Liu ◽  
Pamela Anderson ◽  
Guoyi Zhou ◽  
Boone Kauffman ◽  
Flint Hughes ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Georgi G. Gochev ◽  
Volodymyr I. Kovalchuk ◽  
Eugene V. Aksenenko ◽  
Valentin B. Fainerman ◽  
Reinhard Miller

The theoretical description of the adsorption of proteins at liquid/fluid interfaces suffers from the inapplicability of classical formalisms, which soundly calls for the development of more complicated adsorption models. A Frumkin-type thermodynamic 2-d solution model that accounts for nonidealities of interface enthalpy and entropy was proposed about two decades ago and has been continuously developed in the course of comparisons with experimental data. In a previous paper we investigated the adsorption of the globular protein β-lactoglobulin at the water/air interface and used such a model to analyze the experimental isotherms of the surface pressure, Π(c), and the frequency-, f-, dependent surface dilational viscoelasticity modulus, E(c)f, in a wide range of protein concentrations, c, and at pH 7. However, the best fit between theory and experiment proposed in that paper appeared incompatible with new data on the surface excess, Γ, obtained from direct measurements with neutron reflectometry. Therefore, in this work, the same model is simultaneously applied to a larger set of experimental dependences, e.g., Π(c), Γ(c), E(Π)f, etc., with E-values measured strictly in the linear viscoelasticity regime. Despite this ambitious complication, a best global fit was elaborated using a single set of parameter values, which well describes all experimental dependencies, thus corroborating the validity of the chosen thermodynamic model. Furthermore, we applied the model in the same manner to experimental results obtained at pH 3 and pH 5 in order to explain the well-pronounced effect of pH on the interfacial behavior of β-lactoglobulin. The results revealed that the propensity of β-lactoglobulin globules to unfold upon adsorption and stretch at the interface decreases in the order pH 3 > pH 7 > pH 5, i.e., with decreasing protein net charge. Finally, we discuss advantages and limitations in the current state of the model.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 2011-2014 ◽  
Author(s):  
Richard R Hudson

Abstract A new statistic for detecting genetic differentiation of subpopulations is described. The statistic can be calculated when genetic data are collected on individuals sampled from two or more localities. It is assumed that haplotypic data are obtained, either in the form of DNA sequences or data on many tightly linked markers. Using a symmetric island model, and assuming an infinite-sites model of mutation, it is found that the new statistic is as powerful or more powerful than previously proposed statistics for a wide range of parameter values.


2011 ◽  
Vol 688 ◽  
pp. 66-87 ◽  
Author(s):  
Efrath Barta

AbstractThe flow regime in the vicinity of oscillatory slender bodies, either an isolated one or a row of many bodies, immersed in viscous fluid (i.e. under creeping flow conditions) is studied. Applying the slender-body theory by distributing proper singularities on the bodies’ major axes yields reasonably accurate and easily computed solutions. The effect of the oscillations is revealed by comparisons with known Stokes flow solutions and is found to be most significant for motion along the normal direction. Streamline patterns associated with motion of a single body are characterized by formation and evolution of eddies. The motion of adjacent bodies results, with a reduction or an increase of the drag force exerted by each body depending on the direction of motion and the specific geometrical set-up. This dependence is demonstrated by parametric results for frequency of oscillations, number of bodies, their slenderness ratio and the spacing between them. Our method, being valid for a wide range of parameter values and for densely packed arrays of rods, enables simulation of realistic flapping of bristled wings of some tiny insects and of locomotion of flagella and ciliated micro-organisms, and might serve as an efficient tool in the design of minuscule vehicles. Its potency is demonstrated by a solution for the flapping of thrips.


Author(s):  
Mark Pinsky ◽  
Eshkol Eytan ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Alexander Khain

AbstractAtmospheric motions in clouds and cloud surrounding have a wide range of scales, from several kilometers to centimeters. These motions have different impacts on cloud dynamics and microphysics. Larger-scale motions (hereafter referred to as convective motions) are responsible for mass transport over distances comparable with cloud scale, while motions of smaller scales (hereafter referred to as turbulent motions) are stochastic and responsible for mixing and cloud dilution. This distinction substantially simplifies the analysis of dynamic and microphysical processes in clouds. The present research is Part 1 of the study aimed at describing the method for separating the motion scale into a convective component and a turbulent component. An idealized flow is constructed, which is a sum of an initially prescribed field of the convective velocity with updrafts in the cloud core and downdrafts outside the core, and a stochastic turbulent velocity field obeying the turbulent properties, including the -5/3 law and the 2/3 structure function law. A wavelet method is developed allowing separation of the velocity field into the convective and turbulent components, with parameter values being in a good agreement with those prescribed initially. The efficiency of the method is demonstrated by an example of a vertical velocity field of a cumulus cloud simulated using SAM with bin-microphysics and resolution of 10 m. It is shown that vertical velocity in clouds indeed can be represented as a sum of convective velocity (forming zone of cloud updrafts and subsiding shell) and a stochastic velocity obeying laws of homogeneous and isotropic turbulence.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eugenio Azpeitia ◽  
Eugenio P. Balanzario ◽  
Andreas Wagner

Abstract Background All living systems acquire information about their environment. At the cellular level, they do so through signaling pathways. Such pathways rely on reversible binding interactions between molecules that detect and transmit the presence of an extracellular cue or signal to the cell’s interior. These interactions are inherently stochastic and thus noisy. On the one hand, noise can cause a signaling pathway to produce the same response for different stimuli, which reduces the amount of information a pathway acquires. On the other hand, in processes such as stochastic resonance, noise can improve the detection of weak stimuli and thus the acquisition of information. It is not clear whether the kinetic parameters that determine a pathway’s operation cause noise to reduce or increase the acquisition of information. Results We analyze how the kinetic properties of the reversible binding interactions used by signaling pathways affect the relationship between noise, the response to a signal, and information acquisition. Our results show that, under a wide range of biologically sensible parameter values, a noisy dynamic of reversible binding interactions is necessary to produce distinct responses to different stimuli. As a consequence, noise is indispensable for the acquisition of information in signaling pathways. Conclusions Our observations go beyond previous work by showing that noise plays a positive role in signaling pathways, demonstrating that noise is essential when such pathways acquire information.


Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Katja D. Mombaur ◽  
Richard W. Longman ◽  
Hans Georg Bock ◽  
Johannes P. Schlöder

We present simulated monopedal and bipedal robots that are capable of open-loop stable periodic running motions without any feedback even though they have no statically stable standing positions. Running as opposed to walking involves flight phases which makes stability a particularly difficult issue. The concept of open-loop stability implies that the actuators receive purely periodic torque or force inputs that are never altered by any feedback in order to prevent the robot from falling. The design of these robots and the choice of model parameter values leading to stable motions is a difficult task that has been accomplished using newly developed stability optimization methods.


2012 ◽  
Vol 6 (2) ◽  
pp. 893-930 ◽  
Author(s):  
W. Colgan ◽  
W. T. Pfeffer ◽  
H. Rajaram ◽  
W. Abdalati

Abstract. Due to the abundance of observational datasets collected since the onset of its retreat (c. 1983), Columbia Glacier, Alaska, provides an exciting modeling target. We perform Monte Carlo simulations of the form and flow of Columbia Glacier, using a 1-D (depth-integrated) flowline model, over a wide range of parameter values and forcings. An ensemble filter is imposed following spin-up to ensure that only simulations which accurately reproduce observed pre-retreat glacier geometry are retained; all other simulations are discarded. The selected ensemble of simulations reasonably reproduces numerous highly transient post-retreat observed datasets with a minimum of parameterizations. The selected ensemble mean projection suggests that Columbia Glacier will achieve a new dynamic equilibrium (i.e. "stable") ice geometry c. 2020, by which time iceberg calving rate will have returned to approximately pre-retreat values. Comparison of the observed 1957 and 2007 glacier geometries with the projected 2100 glacier geometry suggests that, by 2007, Columbia Glacier had already discharged ∼83 % of its total sea level rise contribution expected by 2100. This case study therefore highlights the difficulties associated with the future extrapolation of observed glacier mass loss rates that are dominated by iceberg calving.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hans Jacquemyn ◽  
Rein Brys ◽  
Michael Waud ◽  
Alexandra Evans ◽  
Tomáš Figura ◽  
...  

Partial mycoheterotrophy, the ability of plants to obtain carbon from fungi throughout their life cycle in combination with photosynthesis, appears to be more common within the Plant Kingdom than previously anticipated. Recent studies using stable isotope analyses have indicated that isotope signatures in partially mycoheterotrophic plants vary widely among species, but the relative contributions of family- or species-specific characteristics and the identity of the fungal symbionts to the observed differences remain unclear. Here, we investigated in detail mycorrhizal communities and isotopic signatures in four co-occurring terrestrial orchids (Platanthera chlorantha, Epipactis helleborine, E. neglecta and the mycoheterotrophic Neottia nidus-avis). All investigated species were mycorrhizal generalists (i.e., associated with a large number of fungi simultaneously), but mycorrhizal communities differed significantly between species. Mycorrhizal communities associating with the two Epipactis species consisted of a wide range of fungi belonging to different families, whereas P. chlorantha and N. nidus-avis associated mainly with Ceratobasidiaceae and Sebacinaceae species, respectively. Isotopic signatures differed significantly between both Epipactis species, with E. helleborine showing near autotrophic behavior and E. neglecta showing significant enrichment in both carbon and nitrogen. No significant differences in photosynthesis and stomatal conductance were observed between the two partially mycoheterotrophic orchids, despite significant differences in isotopic signatures. Our results demonstrate that partially mycoheterotrophic orchids of the genus Epipactis formed mycorrhizas with a wide diversity of fungi from different fungal families, but variation in mycorrhizal community composition was not related to isotope signatures and thus transfer of C and N to the plant. We conclude that the observed differences in isotope signatures between E. helleborine and E. neglecta cannot solely be explained by differences in mycorrhizal communities, but most likely reflect a combination of inherent physiological differences and differences in mycorrhizal communities.


Sign in / Sign up

Export Citation Format

Share Document